Ordinary muon capture (OMC) studies by means of γ-spectroscopy

Joint Institute for Nuclear Research, DUBNA

D.R. Zinatulina

30.05.2017
MEDEX’17, Prague
Main goal:

\[
\left(T_{1/2}^{0}\right)^{-1} = \left(\frac{\langle m_v \rangle}{m_e} \right)^2 \times F_{0v} \times |NME_{0v}|^2
\]
Virtual transition (Left leg)

Virtual transition (Right leg)

A, Z

$A, Z+1$

$A, Z+2$

$\beta\beta$
$A, Z (p,n)$

Virtual transition (Left leg)

A, Z to $A, Z+1$

Virtual transition (Right leg)

$A, Z+2$
The complications of OMC
<table>
<thead>
<tr>
<th>2β-decay</th>
<th>2β-experiments</th>
<th>OMC target</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>⁷⁶Ge</td>
<td>Gerda I/II, Majorana Demonstrator, LEGEND (R&D)</td>
<td>⁷⁶Se</td>
<td>2004</td>
</tr>
<tr>
<td>⁴⁸Ca</td>
<td>TGV, NEMO3, Candles III</td>
<td>⁴⁸Ti</td>
<td>2002</td>
</tr>
<tr>
<td>¹⁰⁶Cd</td>
<td>TGV</td>
<td>¹⁰⁶Cd</td>
<td>2004</td>
</tr>
<tr>
<td>⁸²Se</td>
<td>NEMO3, SuperNEMO, Lucifer (R&D)</td>
<td>⁸²Kr</td>
<td>2006</td>
</tr>
<tr>
<td>¹⁰⁰Mo</td>
<td>NEMO3, AMoRE (R&D), LUMINEU (R&D)</td>
<td>¹⁰⁰Ru</td>
<td>—</td>
</tr>
<tr>
<td>¹¹⁶Cd</td>
<td>NEMO3, Cobra</td>
<td>¹¹⁶Sn</td>
<td>2002</td>
</tr>
<tr>
<td>¹⁵⁰Nd</td>
<td>SuperNEMO, DCBA (R&D)</td>
<td>¹⁵⁰Sm</td>
<td>2002, 2006</td>
</tr>
<tr>
<td>¹³⁶Xe</td>
<td>EXO200, nEXO (R&D), Kamland-Zen, NEXT</td>
<td>¹³⁶Ba</td>
<td>—</td>
</tr>
<tr>
<td>¹³⁰Te</td>
<td>Cuore 0/Cuore, SNO+</td>
<td>¹³⁰Xe</td>
<td>—</td>
</tr>
</tbody>
</table>
Measurement set-up

\[\mu_{\text{stop}} = \overline{C0} \land C1 \land C2 \land \overline{C3} \]

Number of \(\mu\)-stop = (8 – 25) \times 10^3 \text{ with } 20 – 30 \text{ MeV/c}
PSI, 2006

- Gas inlet
- Beam entrance
- Gas vessel (C3) covered with black paper
- PMT(C3)
- PMT(C1)
- PMC(C2)
Detector efficiencies and timing

- High γ's from 35Cl(n,\(\gamma$), 56Fe(n,\(\gamma$), 28Si(n,\(\gamma$) and μX-rays from Au, Cd, Sm
- Timing deterioration due co-axial geometry of HPGe
- Time lag due to incomplete charge collection
What do we observe and what can we get from the data?:

• Correlated events which could be sorted by time or by energy:

 A. Sorted by energy: Total capture rates;

 B. Sorted by time from 20-50 ns: Cascade of muonic X-rays (prompt spectra) – normalization, identification, composition of around materials and target, enrichment by isotopic shifts;

 C. Sorted by time from 50-700 ns: Nuclear γ-rays following μ-capture (delayed spectra) – partial capture rates, doppler shape of gamma lines can obtain angular correlation (n, ν), energy of high excited GDR state;

• (Background) radiation not connected directly to muons (uncorrelated spectra)

 A. Yield of different isotopes from β-decay.
Time evolution (method)

H.O.U. Fynbo et. al., NPA724 (2003) 493

The fragment number (each fragment corresponds to 10 ns time period)
Muonic-X-rays

Normalization: Number of Incoming muons ~ sum of KX-lines
The information from the μX-ray spectra catalogue is important! (It helps us to identify γ-lines, background, and gives correct selection of the targets and construction materials for different experiments with muons.)
Total μX-ray spectrum of Cd
Extraction of the partial rates

\[\lambda_{(i)} = \frac{\sum I_{\downarrow} - \sum I_{\downarrow}}{\varepsilon \sum I(nK)} \]

detailed balance

\[\lambda_{cap} = \lambda_{total} - Q \lambda_{decay} \quad Q \rightarrow \text{Huff-factor} \]

\[\lambda_{(i)}[\%] = \frac{\lambda_{(i)}}{\lambda_{cap}} \]
Angular correlations with ν in OMC (Doppler shape of γ-lines)
Uncorrelated spectrum measured with ^{76}Se target
Yield of different isotopes from β-decay

\[
\begin{align*}
(A, Z) + \mu^- & \rightarrow (A, Z - 1) + \nu \\
(A, Z) + \mu^- & \rightarrow (A - 1, Z - 1) + \frac{1}{0}n + \nu \\
(A, Z) + \mu^- & \rightarrow (A - 2, Z - 1) + \frac{1}{2}n + \nu \\
(A, Z) + \mu^- & \rightarrow (A - 1, Z - 2) + \frac{1}{1}p + \nu
\end{align*}
\]
Target: ^{48}Ti

Enrichment: 95.8%
Composition: TiO_2 powder
Quantity: 1.0 g
Total μ-capture rates on 48Ti

48Ti(μ^-,v1n)47Sc(3^-_2,807.8)
$\gamma_{807.8}$

48Ti(μ^-,v1n)47Sc(3^-_2,767.1)
$\gamma_{767.1}$

48Ti(μ^-,v1n)48Sc(3^+_2,622.6)
$\gamma_{370.3}$

48Ti(μ^-,v1n)47Sc(3^-_2,1297.1)
$\gamma_{1297.1}$

272 ns isomer

Half-life: 361.1 ns
i.e., $\lambda_{cap} = 2.32 \mu s^{-1}$
Partial rates results of the ^{48}Sc

$\sum \Lambda_{\text{par}}(\%) = 8.40 (157)$

Λ_{par} % of Λ_{cap} | Λ_{par} relative
--- | --- | ---
<3 | |
1+ | 0.14 (8) |
1+ | 0.45 (24) | 0.396 | 0.102
2+ | 1.175 (717) |
1+ | 0.53 (29) | 0.466 | 0.128
1, 2, 3 |
2+ | 0.47 (33) |
4+, 5+ | 0.19 (8) |
1+, 2- | 0.19 (6) | 0.167 | 0.001
1, 2- | 1.064 (628) | 0.936 | 0.007
1+ | 0.52 (23) | 0.46 | 0.05
2+ | 0.71 (42) |
3+ | 0.55 (32) |
3- | 0.11 (6) |
2- | 1.136 (707) | 1.000 | 1.000
2+ | 1.185 (677) | 1.043 | 0.011
3+ |
4+ |
5+ |
6+ |

^{48}Sc

β^-

^{48}Ti

J. Suhonen
Targets: ^{76}Se, natSe

^{76}Se
- Enrichment: 92.4%
- Composition: Se granules
- Quantity: 5.0 g

natSe
- Composition: Se granules
- Quantity: 5.0 g
Total μ-capture rates on Se isotopes

Half-life: 148.48 ns
i.e., $\lambda_{\text{cap}} = 6.3 \, \mu s^{-1}$
Partial rates results of the 76As

$\beta^-\Lambda y(\%) = 13.65(255)$

Λ_{par}, % of Λ_{cap}

$\sum \Lambda_{par} (\%) = 11.99 (105)$
Targets: ^{106}Cd, $^{\text{nat}}\text{Cd}$

^{106}Cd
- Enrichment: 63.0%
- Composition: Cd metal foil
- Quantity: 5.0 g

$^{\text{nat}}\text{Cd}$
- Composition: Cd metal foil
- Quantity: 5.0 g
Total μ-capture rates on Cd isotopes

Half-life: 72.97 ns
i.e., $\lambda_{\text{cap}} = 13.28 \, \mu s^{-1}$
Partial rates results of the ^{106}Ag

$\beta^-:\Lambda_{y,1+}(\%) = 22.85(806)$

$\sum \Lambda_{par,1+}(\%) = 12.36 (201)$
Target: ^{12}C

Year: 2006
Composition: C_4H_{10} (gas)
Quantity: 1.0 l (1 atm.)
The figure shows experimental spectra for the 12B nucleus, comparing the Co-60, K-40, B-12, TI-208, and B-11 isotopes. The data is displayed in three categories: uncorrected (Uncorr.), prompt, and delayed. The spectra are plotted against energy, E_γ, in keV.
Comparison of fitted spectral lines and doublets with optimal values of parameters vs experimental results

\[\chi^2 / n = 0.69 \]
\[dE1 = 2.6 \text{ keV} \]
\[dE2 = 0.2 \text{ keV} \]
\[a2(\gamma_1) = 0.0 \]
\[a2(\gamma_2) = +0.1 \]
\[0.75 \gamma_1 + 0.25 \gamma_2 \]

| \(E_\gamma, \text{ keV} \) | | \(E_\gamma, \text{ keV} \) |
|-----------------------------|-----------------------------|
| \(\tau, \text{ fs} \) | \(\tau, \text{ fs} \) |
| 1667.54 | 1670.14(20) |
| \(\tau < 70 \text{ fs} \) | \(\tau < 19 \text{ fs} \) |
| 1673.52 | 1673.8(5) |
| \(\tau < 50 \text{ fs} \) | \(\tau < 6 \text{ fs} \) |
Level scheme of the 12B bound states

- 2723 keV, 0+,
- 2623.3 keV, < 19 fs, 1-,
- 1673.9 keV, < 6 fs, 2-,
- 953.14 keV, 260 fs, 2+,
- 0 keV, 1+,

12B

β^-

12C

<table>
<thead>
<tr>
<th>Level</th>
<th>Scheme</th>
<th>Roesch et. al. (103 c$^{-1}$)</th>
<th>Giffon et. al. (103 c$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0+</td>
<td></td>
<td>0.62 (6)</td>
<td>1.08 (13)</td>
</tr>
<tr>
<td>1-</td>
<td></td>
<td>0.38 (10)</td>
<td></td>
</tr>
<tr>
<td>2-</td>
<td></td>
<td>0.08 (4)</td>
<td>0.06 (20)</td>
</tr>
<tr>
<td>2+</td>
<td></td>
<td>0.72 (4)</td>
<td>0.27 (10)</td>
</tr>
</tbody>
</table>

$\Lambda_{par} 10^3$ c$^{-1}$

- 2622.8 keV, 6% 1670.20 keV, 80%
- 949.4 keV, 14%
- 1673.8(5) keV, 96.8%
- 720.6 keV, 3.2%
- 953.1 keV

Giffon et. al. (103 c$^{-1}$)
Conclusion and further plans:

- OMC can provide important information about the high-q component of the weak nuclear response, i.e. it is relevant for the neutrinoless double beta decay (here in particular the 2- and 1+ states)

- 48Ti, 76Se, 106Cd and 12C (and 82Kr, 150Sm) have been studied in μ-capture by our group

 A. Total capture rates were measured;
 B. Normalization to μX-rays (total intensity of the μX(Z)-ray K-series gives the number of muons stopped exactly in the target with specific Z), identification were done (as a result – by product – muxrays.jinr.ru for around 75 elements)
 C. Partial capture rates were extracted, as for 12B the correct values of energies and levels life-times were found by fit with χ^2 function;
 D. Yield of 76Se and 106Cd from β-decay have been measured.

- All results about μ-capture experiments with different isotopes (48Ti, 76Se, 106Cd, 150Sm and 82Kr) are in preparation.

- Collaborative work with J.Suhonen (compare results more precisely)
- Join to H. Ejiri’s group for further μ-capture experiments.
Thank you for your attention!

The road to wisdom is quite simple...