Reaction studies of Double Gamow-Teller transitions in $\beta\beta$-decay nuclei

Tomohiro UESAKA
RIKEN Nishina Center
Motonobu Takaki
CNS, University of Tokyo
for RCNP-E429 Collaborations
Starting point

Experimental information on nuclear double Gamow-Teller/double spin-dipole responses is seriously limited.

Lifetimes of $2\nu\beta\beta$ nuclei
- limited to low lying states (mostly ground states) for ~ 10 species.

Single Gamow-Teller/spin-dipole responses
- rich data, constraints to structure models.
 Relationship to double GT/SD responses is not direct.
Existing data: lifetimes of $2\nu\beta\beta$ decay nuclei

<table>
<thead>
<tr>
<th>Isotope</th>
<th>$T_{1/2}^{2\nu}$ (y)</th>
<th>References</th>
<th>$M_{GT}^{2\nu}$ (MeV$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{48}Ca</td>
<td>$(4.2 \pm 1.2) \times 10^{19}$</td>
<td>(55, 56)</td>
<td>0.05</td>
</tr>
<tr>
<td>^{76}Ge</td>
<td>$(1.3 \pm 0.1) \times 10^{21}$</td>
<td>(57–59)</td>
<td>0.15</td>
</tr>
<tr>
<td>^{82}Se</td>
<td>$(9.2 \pm 1.0) \times 10^{19}$</td>
<td>(60, 61)</td>
<td>0.10</td>
</tr>
<tr>
<td>$^{96}\text{Zr}^\dagger$</td>
<td>$(1.4^{+3.5}_{-0.5}) \times 10^{19}$</td>
<td>(62–64)</td>
<td>0.12</td>
</tr>
<tr>
<td>^{100}Mo</td>
<td>$(8.0 \pm 0.6) \times 10^{18}$</td>
<td>(65–70), (71)†</td>
<td>0.22</td>
</tr>
<tr>
<td>^{116}Cd</td>
<td>$(3.2 \pm 0.3) \times 10^{19}$</td>
<td>(72–74)</td>
<td>0.12</td>
</tr>
<tr>
<td>$^{128}\text{Te}^b$</td>
<td>$(7.2 \pm 0.3) \times 10^{24}$</td>
<td>(75, 76)</td>
<td>0.025</td>
</tr>
<tr>
<td>$^{130}\text{Te}^c$</td>
<td>$(2.7 \pm 0.1) \times 10^{21}$</td>
<td>(75)</td>
<td>0.017</td>
</tr>
<tr>
<td>^{136}Xe</td>
<td>$>8.1 \times 10^{20}$ (90% CL)</td>
<td>(77)</td>
<td><0.03</td>
</tr>
<tr>
<td>$^{150}\text{Nd}^\dagger$</td>
<td>$7.0^{+11.8}_{-0.3} \times 10^{18}$</td>
<td>(68, 78)</td>
<td>0.07</td>
</tr>
<tr>
<td>$^{238}\text{U}^d$</td>
<td>$(2.0 \pm 0.6) \times 10^{21}$</td>
<td>(79)</td>
<td>0.05</td>
</tr>
</tbody>
</table>

< 10$^{-3}$ of sum rule values

>99.9%: unobserved

Elliot & Vogel (2002)
Reaction studies of nuclear weak responses

Charge exchange reaction: driven by STRONG interaction
(p, n), ($^3\text{He}, t$), ($d, ^2\text{He}$) . . .

$^A(Z-1)$ $^A(Z-1)$

$^A Z$ $^A Z$

ν π^+

W^+

Proportionality

Our understanding of GT responses

Gamow-Teller giant resonances → quenching tensor force effects g_{NN}, g_{NA}

accessed with charge exchange reactions
Our understanding of GT² responses

Gamow-Teller giant resonances
→ quenching tensor force effects g_{NN}, $g_{N\Delta}$

Double GT Giant resonances
(exhausts a major part of sum-rule strength)

(0.01–0.1% of the sum-rule strength)

Accessed with charge exchange reactions

β-decay

Ground state of the parent nucleus

E_x in daughter nucleus

E_x in grand-daughter nucleus

Accessed with double charge exchange reactions
Double Gamow-Teller Giant Resonances

Gamow-Teller resonance built on a Gamow-Teller resonance exhausts a major part of the $(GT)^2$ strength ↔ $2\nu\beta\beta$ decay

$B(GT^2) \sim 100$

$B(GT^2) \sim 0.1$
Reaction studies of DGT responses will open

- Extension of DGT studies to wider range of excitation energies (no Q-value restriction) any nuclei (not limited to $\beta\beta$ nuclei)
- Quenching of the GT^2 strength
- Nature of DGTGR

Is the DGTGR a simple superposition of single GT?

- Momentum-transfer dependence of $\beta\beta$-decay ME

Double GT Giant resonances (exhausts a major part of sum-rule strength)

(0.01–0.1% of the sum-rule strength)

Accessed with double charge exchange reactions

E_x in grand-daughter nucleus

Accessed with charge exchange reactions

$\beta\beta$-decay
Which double charge-exchange reaction should be used?
Previous attempts to observe DGTR: \((\pi^+, \pi^-)\)

\((\pi^+, \pi^-) @ 292 \text{ MeV LAMPF}\)

S. Mordechai et al., PRL 60, 408 (1988).

Double IAS & Double GDR

Double GT

\((\pi^+, \pi^-)\) populates spin-flip states only weakly
Previous attempts to observe DGTR: \((^{18}\text{O},^{18}\text{Ne})\)

\((\pi^+,\pi^-) \@ 292 \text{ MeV LAMPF}\)

populates spin-flip states only weakly

S. Mordechai et al., PRL 60, 408 (1988).

\((^{18}\text{O},^{18}\text{Ne}) \@ 76\text{MeV/A MSU, GANIL}\)

\((^{18}\text{O},^{18}\text{Ne})\) induces \(\beta^+\beta^+\) transitions

\(\beta^+\) is \(\times 10\) weaker than \(\beta^-\)
due to Pauli blocking
Previous attempts to observe DGTR: \((^{11}\text{B},^{11}\text{Li})\)

\((\pi^+\pi^-) @ 292\text{ MeV LAMPF}\)
- populates spin-flip states only weakly
- S. Mordechai et al., PRL 60, 408 (1988).

\((^{18}\text{O},^{18}\text{Ne}) @ 76\text{MeV/A MSU, GANIL}\)
- \(\beta^+ \times 10\) weaker than \(\beta^-\) due to Pauli blocking

\((^{11}\text{B},^{11}\text{Li}) @ 69\text{MeV/A RCNP}\)
- Lightest projectile
- Small overlap in projectile?
What does “good” double exchange reaction mean

Large production yield
- Large cross section
- Large luminosity
 (high-intensity beam)

Clear event identification

\[(\pi^+, \pi^-) \ (^{18}\text{O}, ^{18}\text{Ne}) \ (^{11}\text{B}, ^{11}\text{Li})\]

<table>
<thead>
<tr>
<th>Large cross section</th>
<th>Large luminosity</th>
<th>Clear event identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\times)</td>
<td>(\times)</td>
<td>(\triangle)</td>
</tr>
<tr>
<td>(\times)</td>
<td>(\bigcirc)</td>
<td></td>
</tr>
<tr>
<td>(\times)</td>
<td>(\bigcirc)</td>
<td></td>
</tr>
<tr>
<td>(\times)</td>
<td>(\bigcirc)</td>
<td></td>
</tr>
</tbody>
</table>
New idea to use \((^{12}\text{C}, ^{12}\text{Be})\) reaction

&

First experimental results on \(^{48}\text{Ca}\)
New Idea: \((^{12}\text{C}, ^{12}\text{Be}(0^+_2)) \) Reaction

\(^{12}\text{C}(\text{gnd}) \rightarrow ^{12}\text{Be}(0^+_2) \) transition is strong.

\(B(\text{GT}^2) \sim 0.3 \)

\(^{12}\text{C}(^{18}\text{O}, ^{18}\text{Ne}) \) experiment → Matsubara, Takaki, TU et al., Few-Body Syst. 54, 1433 (2013).

• This is because all of the initial \(^{12}\text{C}(0^+_\text{g.s.}) \), intermediate \(^{12}\text{B}(1^+_\text{g.s.}) \) and final \(^{12}\text{Be}(0^+_2) \) state are dominated by 0\(\hbar \omega \) configuration.

• Delayed-\(\gamma \) tagging enables clear event identification.

\(\tau(^{12}\text{Be}(0^+_2)) = 331 \text{ ns} \)

\(\Rightarrow \) TOF \(\sim 150 \text{ ns} \) (Grand Raiden)

• \(\sim 70\% \) of the \(^{12}\text{Be}(0^+_2) \) state can survive and reach the focal plane.

These two characteristics make this reaction specially effective in DGTR studies.

Large cross section & high-intensity beam

Clear event identification

two 511 keV \(\gamma \)-ray in back to back
Experiment @ Grand Raiden (RCNP)

Active stopper (plastic) + NaI scintillators

2×511 keV γ-ray in back-to-back

Target 48Ca:10 mg/cm2

12C beam (100 MeV/u, 16 pnA)

$\tau = 331$ ns

$\tau = 362.96 \pm 33.31$ ns
DCX Spectrum and comparison with \((\pi^+,\pi^-)\)

\[\sigma \tau^2 \]

\[^{48}\text{Ca}(^{12}\text{C},^{12}\text{Be}(0^+))\]
\[\theta_{\text{lab}}=0^\circ \]

Takaki, TU et al.

\[\tau^2 \]

M. Kaletka et al., PLB 199, 336 (1987)

DIAS

No apparent structure
“Double Gamow-Teller” Spectrum in 48Ti

$^{48}\text{Ca}(^{12}\text{C},^{12}\text{Be}(0^+_2))$ @0deg:
Takaki, TU et al.

Definitely there is something.
Usefulness of $(^{12}\text{C},^{12}\text{Be}\gamma)$ is proved.
But limited statistics prevent us from drawing final conclusion.
(near) Future Plan
Future experiment @RI Beam Factory, RIKEN

High intensity ^{12}C beam ($<1\mu\text{A}$)
High efficiency γ-ray array (DALI2)
\[\rightarrow \times 500 \text{ statistics!} \]
Liq. Hydrogen to stop ^{12}Be
\[\rightarrow \text{ background free} \]

Higher statistics data
Momentum transfer dependences
Data for ^{48}Ca, ^{76}Ge, ^{116}Cd etc. etc.
Summary

Reaction study with heavy-ion double charge exchange reactions can extend our reach to double GT/SD states to a wider range of excitation energy to a variety of nuclei. One flagship is observation of DGT giant resonances.

$^{12}\text{C}, ^{12}\text{Be}\gamma$ can be a good probe to investigate the DGT states. Results from the first RCNP experiment indicate existence of DGT giant resonances in ^{48}Ti. ★ Reliable reaction theory for the double charge exchange should be established for quantitative discussions.
Collaborators

CNS, University of Tokyo
RIKEN Nishina Center
RCNP, Osaka University
Department of Physics, Kyushu University
Department of Physics, Konan University