Beta decays in investigations and searches for rare effects

V.I. Tretyak
Institute for Nuclear Research, Kyiv, Ukraine

tretyak@kinr.kiev.ua, tretyak@lngs.infn.it http://lpd.kinr.kiev.ua

Contents

- 1. Introduction
- 2. Classification of beta decays
- 3. Shapes of beta spectra
- 4. Investigations of rare β decays (48Ca, ⁵⁰V, ⁹⁶Zr, ¹¹³Cd, ^{113m}Cd, ¹¹⁵In, ¹²³Te, ^{180m}Ta, ²²²Rn)
- 5. Forbidden non-unique β decays and g_A and g_V values
- 6. Semiempirical formulae for β T_{1/2}
- 7. Conclusions

β: (A,Z) \rightarrow (A,Z±1) + e[±] + ν from ³H to superheavy $T_{1/2}$ from 1.5 ms (³⁵Na) to 10¹⁶ y (¹¹³Cd)

Introduction

Beta radiation was observed long ago (E. Rutherford, Philos. Mag. 47 (1899) 109) but our knowledge still can be and should be improved.

Some rare β decays (T_{1/2} > 10¹⁰ y) are poorly investigated (spectrum shape is not measured – e.g. ⁵⁰V) and even not observed (e.g. ¹²³Te, ^{180m}Ta).

Interest to β decays increased during last time because sometimes they constitute significant background in searches for and investigations of rare effects:

- solar neutrinos (e.g. ¹⁴C in Borexino)
- 2β decay (e.g. ³⁹Ar, ⁴²Ar/⁴²K in GERDA)
- dark matter experiments, especially based on Ar (e.g. ³⁹Ar, ⁴²Ar in DarkSide)

G. Bellini et al., Nature 512 (2014) 383

M. Agostini et al., Nature 544 (2017) 47

P. Agnes et al., PRD 93 (2016) 081101

Some other single β decayers are usual backgrounds in many experiments: 40 K, 90 Sr/ 90 Y, 137 Cs, 214 Bi, ... - and very often their energy spectrum has not allowed shape.

²¹⁴Bi – one of the main backgrounds in all 2β experiments, Q_{β} = 3272 keV, 18.2% g.s. to g.s. transition, 1⁻ \rightarrow 0⁺, 1 FNU – shape is not calculated theoretically and not well measured experimentally (only very old works IANSF 16 (1952) 314; JPSJ 8 (1953) 689; NC 2 (1955) 745 and recent PRC 81 (2010) 034602) – not far from allowed).

General classification of β decays:

in dependence on change in spin and parity between mother and daughter nuclei

```
\begin{array}{lll} \Delta J^{\Delta\pi} = & & -\text{ allowed} \\ 0^+ \ 1^+ & & -\text{ allowed} \\ 0^- \ 1^- \ 2^+ \ 3^- \ 4^+ \dots & \Delta\pi = (-1)^{\Delta J} & -\text{ forbidden non-unique; forbidenness} = \Delta J \\ & 2^- \ 3^+ \ 4^- \dots & \Delta\pi = (-1)^{\Delta J-1} & -\text{ forbidden unique; forbidenness} = \Delta J-1 \end{array}
```

Each next degree of forbidenness in forbidden non-unique (FNU) or forbidden unique (FU) transitions gives 5–6 orders of magnitude in ft value (i.e., in $\sim T_{1/2}$) – see B. Singh et al., Nucl. Data Sheets 84 (1998) 487:

1 FNU
$$(0^- 1^-)$$
 - ft = 7.3
2 FNU (2^+) - ft = 12.5
3 FNU (3^-) - ft = 17.5
4 FNU (4^+) - ft = 23.4

(for superallowed ft = \sim 3, for allowed ft = \sim 6)

From theoretical point of view, FU β decays are simpler: rate of decay and shape of spectrum is defined by only one nuclear matrix element (what is why "unique")

5

Shape of β spectrum in general is described as:

$$\rho(E) = \rho_{allowed}(E) \times C(E)$$

$$\rho_{\text{allowed}}(E) = F(Z_d, E)WP(Q_{\beta}-E)^2$$
 – allowed spectrum W (P) – total energy (momentum) of β particle $F(Z_d, E)$ – Fermi function

C – (empirical) correction factor; W – in m_ec^2 units; P,Q – in m_ec units

for FNU
$$C_1(E) = 1 + a_1/W + a_2W + a_3W^2 + a_4W^3$$

or
$$C_1(E) = 1 + b_1 P^2 + b_2 Q^2$$

Q – momentum of (anti)neutrino

For
$$FU$$
 $C = C_1C_2$

1 FU
$$C_2 = P^2 + c_1 Q^2$$

2 FU
$$C_2 = P^4 + c_1 P^2 Q^2 + c_2 Q^4$$

3 FU
$$C_2 = P^6 + c_1 P^4 Q^2 + c_2 P^2 Q^4 + c_3 Q^6$$

4 FU
$$C_2 = P^8 + c_1 P^6 Q^2 + c_2 P^4 Q^4 + c_3 P^2 Q^6 + c_4 Q^8$$

or

1 FU
$$C_2 = Q^2 + \lambda_2 P^2$$
, 2 FU ... $\lambda_2, \lambda_4, ...,$

where λ_i – Coulomb functions calculated in H. Behrens, J. Janecke, Numerical Tables for Beta-Decay and Electron Capture, 1969

Fermi function $F(Z_d, E)$:

takes into account influence of electric field of daughter nucleus (and atomic shell) on emitted e⁻ or e⁺ particle

Calculations of F(Z,E) for non-point nucleus, corrections from screening by atomic shell, etc.:

- 1. H. Behrens, J. Janecke, Numerical Tables for Beta-Decay and Electron Capture, 1969
- 2. B.S. Djelepov et al., Beta Processes. Functions for the Analysis of Beta-Spectra and Electron Capture, 1972

Good approximation is: $F(Z,E)\sim P^{2(\gamma-1)}e^{\pi y}|\Gamma(\gamma+iy)|^2$ $y=\alpha ZW/P$ $\gamma=[1-(\alpha Z)^2]^{1/2}$ $\alpha=1/137.036$ Z>0 for β^- and Z<0 for β^+

Primakoff-Rosen approximation (1959) is simple: F(Z,E)~W/P but adequate for Z>0 (β- decay)

R.D. Evans, The Atomic Nucleus, 1955:

β⁻ and β⁺ spectra of 64 Cu (Z=29) Q(β⁻)=579 keV Q(β⁺)=653 keV

Fig. 1.4 Energy spectrum of the negatron β rays from Cu⁴⁴.

Fig. 1.6 Energy spectrum of the positron β rays from Cu⁸⁴.

Theoretical calculations of coefficients a_i, b_i, c_i:

they are mixture of products of phase space factors with different nuclear matrix elements – a lot of theoretical efforts

There are sometimes unexpected things even for "simple" cases as f.e. for 14 C: while it is allowed beta decay 14 C(0+) \rightarrow 14 N(1+), experimental shape of spectrum is different from allowed, and also $T_{1/2}$ is too long (ft=9 instead of ft~6 for allowed decays)

Best of all is to use shape measured experimentally (the problem is that results could be different in different experiments ...).

Compilations of a_i, b_i, c_i:

- 1. H. Paul, Shapes of beta spectra, Nucl. Data Tables A 2 (1966) 281;
- 2. H. Daniel, Shapes of beta-ray spectra, Rev. Mod. Phys. 40 (1968) 659 (in fact, incorporates all data from Paul'1966);
- 3. H. Behrens, L. Szybisz, Shapes of beta spectra, Phys. Data 6-1 (1976);
- 4. X. Mougeot, Realibility of usual assumptions in the calculation of β and ν spectra, Phys. Rev. C 91 (2015) 055504; Appl. Rad. Isot. 109 (2016) 177.

Shapes: ¹⁴C β spectrum

 $0^+ \rightarrow 1^+ \Delta J^{\Delta \pi} = 1^+$ classified as allowed

However, ft=9.0 instead of usual ft~6 for allowed decays $(T_{1/2}$ is too big).

It is explained by accidental cancellation of the 1-st order nuclear matrix elements, so second order effects start to be important

C(E) – measured in few works (including Ge detector with implanted ¹⁴C!)

The last one is: C(E) = 1+aW with a=-0.347 [V.V. Kuzminov et al., Phys. At. Nucl. 63 (2000) 1292]

Shapes: ³⁹Ar and ⁴²Ar/⁴²K β decays

³⁹Ar, ⁴²Ar: $\Delta J^{\Delta \pi} = 2^-$ classified as 1 FU C(E) = (Q²+λ₂P²)(1+aW), a = 0

⁴²K (to g.s., 81.90%): $\Delta J^{\Delta \pi} = 2^-$ 1 FU C(E) = (Q²+λ₂P²)(1+aW), a ≠ 0

⁴²K (to 1525 keV, 17.64%): $\Delta J^{\Delta\pi} = 0^-$ 1 FNU C(E) = 1+a₁/W+a₂W+a₃W² a, a_i – see Behrens'1976

DECAY0:

Recent calculations for ³⁹Ar and ⁴²Ar: J. Kostensalo et al., arXiv:1705.05726

Shapes in DECAY0:

Shapes: ⁴⁰K β spectrum

 40 K: 10.7% EC, 89.3% β decay $^{4-}$ → 0+ $^{4-}$ $^{4-}$ classified as 3 FU

C(E) = $P^6 + c_1 P^4 Q^2 + c_2 P^2 Q^4 + c_3 Q^6$ $c_1 = 7$, $c_2 = 7$, $c_3 = 1$ [W.H. Kelly et al., Nucl. Phys. 11 (1959) 492]

Shapes: ⁸⁷Rb β spectrum

 $3/2^- \rightarrow 9/2^+$ $\Delta J^{\Delta\pi} = 3^-$ classified as 3 FNU

Was measured in old works:

- 1. K. Egelkraut, H. Leutz, Z. Phys. 161 (1961) 13 (in German) only exp. spectrum
- 2. G.B. Beard, W.H. Kelly, Nucl. Phys. 28 (1961) 570 exp. spectrum + FK plot
- 3. B. Rüttenauer, E. Huster, Z. Phys. 258 (1973) 351 (in German)

and in the recent ones:

- 4. K. Kossert, Appl. Radiat. Isot. 59 (2003) 377 fitting old experimental data $C_1(E) = 1$, $C_2 = P^4 + 118.00P^2Q^2 + 333.33Q^4$ (described as 2 FU, $\Delta J^{\Delta\pi} = 3^+$)
- 5. A.G. Carles et al., Nucl. Phys. A 767 (2006) 248 new experimental data $C_1(E) = 1$, $C_2 = P^4 + 27.73P^2Q^2 + 90.91Q^4$ (described as 2 FU, $\Delta J^{\Delta\pi} = 3^+$) (also A.G. Carles et al., Nucl. Instrum. Meth. A 572 (2007) 760)

K. Kossert, Appl. Radiat. Isot. 59 (2003) 377: (as one can see, very good agreement with experimental data)

Comparison of ⁸⁷Rb β spectra: allowed parameterization ARI 59 (2003) 377 parameterization NPA 767 (2006) 248 step = 1 keV normalized to area = 1 for all spectra

Fig. 1. Calculated β -spectrum N(E) of ${}^{87}{\rm R}\,{\rm b}$ and measured data from Egelkraut and Leutz (1961) (filled squares), Ruettenhauer and Huster (1973) (open circles) and Lewis (1952) (open squares). The dotted and dashed-dotted lines are calculated

Shapes: ⁹⁰Sr and ⁹⁰Y β spectra

Both are (practically) pure β decayers $\Lambda J^{\Delta \pi} = 2^-$ classified as 1 FU

Both are (practically) pure
$$\beta$$
 decayers $\Delta J^{\Delta\pi} = 2^-$ classified as 1 FU

$$C(E) = (Q^2 + \lambda_2 P^2)(1 + aW)$$

 λ_2 – Coulomb function from BJ'1969

a = -0.032 for 90 Sr

a = -0.0078 for 90 Y

[H.H. Hansen, Appl. Rad. Isot. 34 (1983) 1241]

Spectra of ⁹⁰Sr and ⁹⁰Y generated with DECAY0 event generator:

28.78 y

Shapes: ¹³⁷Cs β decay

(1) 94.4%
$$7/2^+ \rightarrow 11/2^ \Delta J^{\Delta\pi} = 2^-$$
 classified as 1 FU (2) 5.6% $7/2^+ \rightarrow 3/2^+$ $\Delta J^{\Delta\pi} = 2^+$ classified as 2 FNU

$$7/2+$$
 0 $7/2+$ 0 $7/2+$ 0 $7/2+$ 0 $7/2+$ 0 $7/2+$ 0 $7/2+$ 0 $7/2+$ 0 $7/2+$ 0 $7/2+$ 0 $7/2+$ 0 $7/2+$ 0 stable 137 Ba

(1)
$$C(E) = Q^2 + \lambda_2 P^2$$

(2)
$$C(E) = 1+c_1/W+c_2W+c_3W^2$$

 $c_1 = 0$, $c_2 = -0.6060315$, $c_3 = 0.0921520$
[S.T. Hsue et al., Nucl. Phys. 86 (1966) 47]

"Real" spectrum of electrons emitted by ¹³⁷Cs (generated with DECAY0)

Searches: 48Ca

 Q_{β} =279(5) keV, δ (48Ca)=0.187%

Could be populated:

ground state $\Delta J^{\Delta\pi}=6^+$

level 131 keV $\Delta J^{\Delta\pi}=5^+$

level 252 keV $\Delta J^{\Delta\pi}=4^+$

 $T_{1/2}$ - theoretical estimates and experimental limits (y) ($T_{1/2}$ decreases as ~1/Q⁵, but increases for bigger $\Delta J^{\Delta\pi}$):

	Theory [1]	Theory [2]	Experiment [3]			
6+(g.s.)	=4.0e25	=1.5e29-1.3e31	>1.6e20	\ 0 ⁺		0
5+(131)	=4.0e22	$=(1.1^{+0.8} \circ e)e21$	>2.5e20 the mos	st probable	⁴⁸ Ti	

5.(131) =4.0e22 =(1.1.66_{-0.6})e21 >2.5e20 the most probable

4+(252) =3.0e23 =8.8e23-5.2e26 >1.9e20 (also M. Haaranen et al.,

PRC 89 (2014) 034315:

1212.9

1037.5

1312.1

2295,6

983.5

[1] R.K. Bardin et al., NPA 158 (1970) 337

(2.6-7.0)e20)

- [2] M. Aunola et al., Europhys. Lett. 46 (1999) 577
- [3] A. Bakalyarov et al., JETP Lett. 76 (2002) 545 (search for deexcitation γ 's of ⁴⁸Sc, ⁴⁸Ti with Ge detector)

⁴⁸Ca can decay also through 2β decay to ⁴⁸Ti (2nd order process) – already observed in few experiments; NEMO-3'2016: $T_{1/2}(2\beta 2\nu, g.s.) = 6.4e19 y.$ Thus single β decay occurs even with lower probability than 2β - due to big $\frac{1}{2}J$

Searches: 50 V δ =0.250%

One of only 3 nuclei where β processes with $\Delta J^{\Delta\pi}=4^+$ were observed (other two are ¹¹³Cd and ¹¹⁵In)

Low natural abundance (δ =0.250%), big T_{1/2} (difficult to study)

Experiment 1989: J.J. Simpson et al., PRC 39 (1989) 2367 3 Ge detectors, 337.5 g of natural V, salt mine, 1109 h Search for γ 's of 1554 keV (EC) and 783 keV (β ⁻ decay)

Peak 783 keV is not observed:

$$T_{1/2}(EC)=(2.3\pm0.3)e17 \text{ y}, T_{1/2}(\beta^-)>1.7e18 \text{ y}$$

Only γ 's are detected;

 $T_{1/2}$ is measured but not shape of β spectrum

Searches: 96Zr

$$Q_{\beta}$$
=163.97(10) keV, δ (96Zr)=2.80%

$\frac{0^{+} 3.9 \times 10^{19} \text{ y}}{96 \text{Zr}} \xrightarrow{\beta - \beta -} \frac{6^{+} 23.35 \text{ h}}{96 \text{Nb}} \xrightarrow{\beta}$ $Q_{\mu} 164$ $Q_{\mu} 3187$

Could be populated:

ground state
$$\Delta J^{\Delta\pi}=6^+$$

level 44 keV $\Delta J^{\Delta\pi}=5^+$
level 146 keV $\Delta J^{\Delta\pi}=4^+$

$T_{1/2}$ - theoretical estimates and experimental limits:

- [1] H. Heiskanen et al., J. Phys. G 34 (2007) 837
- [2] M. Arpesella et al., Europhys. Lett. 27 (1994) 29 (search for deexcitation γ 's of 96 Mo with Ge detector; $\delta(^{96}$ Zr)=2.80% much higher than that for 48 Ca; worth to remeasure with higher sensitivity?)

 2β decay of 96 Zr to 96 Mo: $T_{1/2}(2\beta2\nu, g.s.) = (2.3\pm0.2)e19$ y (NEMO-3'2015). Geochemical 2β $T_{1/2}$: =(3.9±0.9)e19 Kawashima'1993 and =(0.9±0.3)e19 Wieser'2001.

Contribution of single β decay to geochemical $T_{1/2}$?

Searches: 123 **Te** $\delta(^{123}$ **Te**)=0.89%

>1×10¹³ y 123**Te** Q_{EC}=53.3

Many puzzling experimental situations (only K EC was searched for):

- stable 7/2+ 0 +100% 14.8²
- 1. D.N. Watt et al., Philos. Mag. 7 (1962) 105: detection of Sb X rays E_X =26.1 keV after EC with prop. counter, $T_{1/2}$ =(1.24±0.10)e13 y This result was present in all nuclear tables many years
- 2. A. Alessandrello et al., PRL 77 (1996) 3319: four 340 g TeO_2 bolometers, underground measurements (LNGS, 3600 m w.e.), 1548 h Peak at total energy release of 30.5 keV (E_K of Sb) is observed, $T_{1/2}^{K}=(2.4\pm0.9)e19 \ y$ 6 orders of magnitude higher! Result of Watt'1962 was explained by excitation of Te atoms by cosmic rays and nat. radioactivity that gives $E_X=27.3$ keV, and by not enough good resolution of prop. counter
- 3. A. Alessandrello et al., PRC 67 (2003) 014323: twenty 340 g TeO₂ bolometers, LNGS (3600 m w.e.), peak at 30.5 keV is not present, $T_{1/2}^{K} > 5.0e19$ y!
- However, this peak appeared once more after all crystals were dismounted for surface cleaning at the sea level for ~2 months period and reinstalled underground.
- Explanation of Alessandrello'1996: peak at 30.5 keV is due to EC of 121 Te (Q=1036 keV, $T_{1/2}$ =16.78 d); 121 Te is produced by neutron capture on 120 Te (δ =0.09%)!

Searches: 180mTa

Extremely interesting case:

g.s. state quickly decays ($T_{1/2}$ ~8 h); isomeric state ($E_{\rm exc}$ =77 keV) has big $T_{1/2}$ >4.5e16 y $\delta(^{180m}Ta)$ =0.012%

EC
$$\Delta J^{\Delta \pi} = 3^-$$
 3 FNU $\beta^ \Delta J^{\Delta \pi} = 3^-$ 3 FNU

Last experimental limits:

B. Lehnert et al., PRC 95 (2017) 044306 1500 g of natural Ta, sandwich HP Ge, underground HADES laboratory (500 m w.e.)

$$T_{1/2}(EC) > 2.0e17 y$$

 $T_{1/2}(\beta^-) > 5.8e16 y$

Theoretical $T_{1/2}$ estimations:

E.B. Norman, PRC 24 (1981) 2334: IT > 1e27 y

H. Ejiri et al., JPG 44 (2017) 065101: IT = 1.4e31 y (8e18 with convers. el.)

EC = 1.4e20 y

 $\beta^- = 5.4e23 y$

BaF₂ scintillator, 1.714 kg, LNGS (3600 m w.e.), 101 h. High contamination by ²²⁶Ra – 7.8 Bq/kg.

In all nuclear tables, ²²²Rn (in chain of ²³⁸U) is 100% α decaying. Usual chain:

However, β decay of ²²²Rn also is energetically allowed with Q=24±21 keV. In this case:

²²²Rn(0+) \rightarrow ²²²Fr(2-), $\Delta J^{\Delta\pi}$ =2-; T_{1/2} can be estimated using average (for 216 known 1 FU β decays) log ft = 9.5 and LOGFT tool at NNDC as T_{1/2} = 4.8×10⁵ y (for Q=24 keV; 6.7×10⁴ y for Q=45 keV and 2.4×10⁸ y for Q=3 keV).

Expected E and Δt are known, and it is possible to distinguish between α and β events in BaF₂ scintillator because of difference in their time shapes.

Following sequence of events was searched for ($^{222}Fr \rightarrow ^{222}Ra \rightarrow ^{218}Rn \rightarrow ^{214}Po$):

- (1) event at 30 2207 keV (222 Fr Q_{β} + FWHM $_{\beta}$) and with β time shape;
- (2) next event at 2109 2623 keV (222 Ra E_{α} + FWHM_{α} in γ scale), with α time shape and in time interval [1.65 ms, 1.65 ms + 5×38.0 s];
- (3) last event at 2398 2946 keV (218 Rn E $_{\alpha}$ + FWHM $_{\alpha}$ in γ scale), with α time shape and in time interval [1.65 ms, 1.65 ms + 5×35 ms].

Recent investigations: 113 Cd δ =12.22%

 $1/2^+ \rightarrow 9/2^+$ $\Delta J^{\Delta\pi} = 4^+$ classified as 4 FNU

Was searched for since 1940, first observed in 1970, first measurement of β shape in 1988 with CdTe detector

One of the last experiments: P. Belli et al., PRC 76 (2007) 064603 CdWO₄ scintillator 434 g, LNGS (3600 m w.e.), 2758 h

Experimental spectrum (S/B ratio = 1/50) and its fit by:

$$f(E) = \int_0^{Q_\beta} \rho(E') R(E, E') dE', \qquad \qquad \rho(E) = w p F(E, Z) (Q_\beta - E)^2 \cdot C(w)$$

$$C(w) = p^6 + 7a_1p^4q^2 + 7a_2p^2q^4 + a_3q^6 \qquad R(E, E') = \frac{1}{\sqrt{2\pi}\sigma(E')}\exp\left(-\frac{(E - E')^2}{2\sigma^2(E')}\right)$$

Kurie plots not accounting and accounting for correction factor C(w)

Big statistics, purity of crystal lead to determination of T_{1/2} with small uncertainty:

$$T_{1/2}$$
=(8.04±0.05)e15 y

Experimental spectrum is excellently described as 3 FU ($\Delta J^{\Delta\pi} = 4^-$):

 $C(E) = P^6 + c_1 P^4 Q^2 + c_2 P^2 Q^4 + c_3 Q^6$ with $c_1 = 7.112$, $c_2 = 10.493$, $c_3 = 3.034$

(small puzzle: shape for $\Delta J^{\Delta\pi} = 4^+$ is described perfectly by shape for $\Delta J^{\Delta\pi} = 4^-$)

Recent theoretical description as 4 FNU:

M.T. Mustonen et al., PRC 73 (2006) 054301 + 76 (2007) 019901(E); PLB 657 (2007)

38 (shape different from the experimental one)

But: dependence of shape on g_A value: M. Haaranen et al., PRC 93 (2016) 034308 for g_A = 0.9 theor. shape is close to the exp. one

Last experimental work:

J.V. Dawson et al., NPA 818 (2009) 264 16 CdZnTe detectors, LNGS, 6.58 kg×d Confirmed $T_{1/2}$ and shape of spectrum, but gave different Q_{β} value (322 keV instead of 345 keV in Belli'2007) (another small puzzle ...)

New measurements are in progress at LSM with CdWO₄ scintillating bolometer (433 g), EDELWEISS set-up, 17 mK;

threshold: ~4(15) keV for heat(light); FWHM at 356 keV: 3.7(54) keV for heat(light)

Investigations in progress: 113mCd

11/2⁻ \rightarrow 9/2⁺ $\Delta J^{\Delta\pi}$ = 1⁻ classified as 1 FNU shape was not measured previously

¹⁰⁶CdWO₄ scintillator 215 g, LNGS (3600 m w.e.), 391 h Quite high activity of ^{113m}Cd: 83 Bq/kg (probably before enrichment this Cd was used in reactor shielding)

Preliminary results:

Experimental spectrum deviates from the allowed shape

Not very recent investigations: 115In

δ=95.71%

 $9/2^+ \rightarrow 1/2^+$ $\Delta J^{\Delta\pi} = 4^+$ classified as 4 FNU

Contrary to ¹¹³Cd, the spectrum shape was measured only in one work, L. Pfeiffer et al., PRC 19 (1979) 1035:

Liquid scintillator (LS) loaded by In at 51.2 g/l, measurements at the sea level. What could be improved:

- (1) Background, in particular n capture by ¹¹⁵In (¹¹⁶In is β ⁻ unstable, Q=3275 keV)
- (2) Strong quenching of low-energy electrons in LS (was not discussed)
- (3) Resolution "is not known and is not readily measurable"
- (4) Q was obtained as 492.7(13.6) keV and 470.6(5.2) keV; today value is 499(4)
- (5) $T_{1/2}$ =(4.41±0.24)e14 y (since 1979 in all tables), but in some disagreement with previous results (e.g. G.B. Beard et al., PR 122 (1961) 1576: $T_{1/2}$ =(6.9±1.5)e14 y)
- (6) Energy threshold around 50 keV
- (7) Shape is described as polynomial in E

Remeasuring in low background conditions would be very interesting!

Recent theoretical description as 4 FNU:

M.T. Mustonen et al., PRC 73 (2006) 054301 + PRC 76 (2007) 019901(E)

M.T. Mustonen et al., PLB 657 (2007) 38

M. Haaranen et al., PRC 93 (2016) 034308; 95 (2017) 024327 (in dep. on g_A)

J. Kostensalo et al., PRC 95 (2017) 044313 (in dependence on g_A)

Nice news:

possibility to measure ¹¹⁵In β decay with new crystal scintillator – LiInSe₂ (MIT, Lindley Winslow)

Ge LD with Neganov-Luke amplification

CSNSM-MIT-KINR experiment in France:

- LilnSe₂ (8×15×19 mm, 10.3 g) scintillating bolometer, high light yield (~14 keV/MeV)
- Neganov-Luke Ge light detector
- Calibration by environmental γ 's (heat) and by 55 Fe X-ray (light); threshold: ~3(5) keV for heat(light); FWHM at 609 keV: 11(121) keV for heat(light)
- Goal: threshold well below ~50 keV

Very preliminary (t=88 h): $T_{1/2} = 5.58(2) \times 10^{14}$ y

Problem of pile-ups

Recent discovery: ¹¹⁵In → ¹¹⁵Sn*

First observation of β decay of ¹¹⁵In to the first excited level (E_{exc}= 497.334(22) keV) of ¹¹⁵Sn: C.M. Cattadori et al., NPA 748 (2005) 333 + Phys. At. Nucl. 70 (2007) 127: LNGS, ~1 kg In, 4 HPGe 225 cm³ each, 2762 h In + 1601 h bkg

Confirmation of observation of ¹¹⁵In → ¹¹⁵Sn* decay

HADES underground laboratory (500 m w.e.), 2566 g of In, 3 Ge detectors: $T_{1/2}$ =(4.1±0.6)e20 y (E. Wieslander et al., PRL 103(2009)122501) $T_{1/2}$ =(4.3±0.5)e20 y (E. Andreotti et al., PRC 84(2011)044605)

Situation in 2005:

```
\Delta M_a = 499±4 keV (G. Audi et al., 729 (2003) 337) E_{\rm exc} = 497.334(22) keV (J. Blachot, NDS 104 (2005) 967) Q_{\beta}^* = \Delta M_a - E_{\rm exc} = 1.7±4 keV – possibly the lowest known measured Q_{\beta} value
```

Precise measurements of difference ΔM_a of ¹¹⁵In–¹¹⁵Sn masses ΔM_a = 497.489±0.010 keV (B.J. Mount et al., PRL 103(2009)122502) Thus, Q_{β}^* = (497.489±0.010)–(497.334±0.022) = 155±24 eV Really the lowest Q value of a known β decay (¹⁶³Ho – 2.555 keV, ¹⁸⁷Re – 2.469 keV) and highest (partial) T_{1/2}

Paradoxical situation: masses of the nuclei (~100 GeV) are known with precision 10 eV while $E_{\rm exc}$ (~500 keV) – with precision 22 eV (needs to be remeasured). Recent remeasurements of $E_{\rm exc}$:

W. Urban et al., PRC 94 (2016) 011302: 497.316(7) keV \to $Q_{\beta}^{\ *}$ = 173±12 eV V.A. Zheltonozhsky et al., to be published: 497.341(3) keV \to $Q_{\beta}^{\ *}$ = 148±10 eV

Influence of different chemical environment on $T_{1/2}$ (In, InCl₃, etc.). If to use dependence $T_{1/2}\sim 1/Q^5$ and change Q on 1 eV only, we will obtain $(155/154)^5=1.03-3\%$ change in $T_{1/2}$. Difficult but maybe possible to see (current accuracy – 12%).

Deviations from theoretical spectrum due to non-zero ν mass? Theoretical spectrum ($\Delta J^{\Delta\pi} = 3^+$ – classified as 2 FU) was calculated in R. Dvornicky, F. Simkovic, AIP Conf. Proc. 1417(2011)33. Very difficult experimentally.

30

Forbidden non-unique β decays and g_A and g_V values

PHYSICAL REVIEW C 93, 034308 (2016)

Forbidden nonunique β decays and effective values of weak coupling constants

M. Haaranen, P. C. Srivastava, and J. Suhonen

Forbidden nonunique β decays feature shape functions that are complicated combinations of different nuclear matrix elements and phase-space factors. Furthermore, they depend in a very nontrivial way on the values of the weak coupling constants, g_V for the vector part and g_A for the axial-vector part. In this work we include also the usually omitted second-order terms in the shape functions to see their effect on the computed decay half-lives and electron spectra (β spectra). As examples we study the fourth-forbidden nonunique ground-state-to-ground-state β^- decay branches of ¹¹³Cd and ¹¹⁵In using the microscopic quasiparticle-phonon model and the nuclear shell model. A striking new feature that is reported in this paper is that the calculated shape of the β spectrum is quite sensitive to the values of g_V and g_A and hence comparison of the calculated with the measured spectrum shape opens a way to determine the values of these coupling constants. This article is designed to show the power of this comparison, coined spectrum-shape method (SSM), by studying the two exemplary β transitions within two different nuclear-structure frameworks. While the SSM seems to confine the g_V values close to the canonical value $g_V = 1.0$, the values of g_A extracted from the half-life data and by the SSM emerge contradictory in the present calculations. This calls for improved nuclear-structure calculations and more measured data to systematically employ SSM for determination of the effective value of g_A in the future.

Rate of 2β decay is $\sim g_A^4$. For bare nucleon $g_A=1.25$, for infinite nuclear matter $g_A=1$. This already gives uncertainty of $(1.25)^4=2.44$! However, g_A could be quenched down to ~ 0.4 , and $0.4^4=0.025$ – thus we have ~ 2 orders of magnitude uncertainty in $T_{1/2}$ for 2β decays!

For non-unique forbidden beta decays, shape of energy spectrum depends on sum of different nuclear matrix elements (NMEs) with different phase space factors which include also g_A and g_V constants. Comparing theoretical shape with experimental, it is possible to find their values.

The authors used our experimental spectrum [P. Belli et al., PRC 76 (2007) 064603 to find g_A value (depends also on theory (MQPM, NSM, ...)

See also:

- M. Haaranen et al., PRC 95 (2017) 024327
- J. Kostensalo et al., PRC 95 (2017) 044313

Semiempirical formulae for β T_{1/2}

PHYSICAL REVIEW C 73, 014305 (2006)

New exponential law of β^+ -decay half-lives of nuclei far from β -stable line

Xiaoping Zhang1 and Zhongzhou Ren1,2,+

 $\log_{10} T_{1/2} = (c_1 Z + c_2) N + c_3 Z + c_4$, c_i are given for 1st and 2nd forb. β ⁺ decays

Commun. Theor. Phys. (Beijing, China) 48 (2007) pp. 1072–1080 © International Academic Publishers

Vol. 48, No. 6, December 15, 2007

Simple Formula of β^+ -Decay Half-Lives of Nuclei Far From β -Stable Line*

ZHANG Xiao-Ping, REN Zhong-Zhou, 1,2,† and ZHI Qi-Jun¹

the same formula; c_i are given for allowed,1st and 2nd forbidden β⁺ decays

IOP PUBLISHING

JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

J. Phys. G: Nucl. Part. Phys. 34 (2007) 2611-2632

doi:10.1088/0954-3899/34/12/007

Systematics of β^- -decay half-lives of nuclei far from the β -stable line

Xiaoping Zhang¹, Zhongzhou Ren^{1,2}, Qijun Zhi¹ and Qiang Zheng¹

the same formula; c_i are for β - decays

Conclusions

There was a little interest in investigations of rare β decays since ~1970's – no $T_{1/2}$ were measured with higher precision, no shapes of β spectra.

During last time, development of experimental technique lead to improvement in sensitivity, and new decays were observed with extreme characteristics (β with lowest Q of 155 eV for 115 In \rightarrow 115 Sn*).

Interest to β shapes also is growing, in particular for nuclides which create background in rare events' searches.

Many theoretical works also appeared last time. New approach to measure g_A/g_V ratio through non-unique forbidden beta decays (113 Cd, 115 In) is proposed.

It could be concluded that investigations of rare β decays start to revive now, and we could expect new interesting theoretical works and experimental measurements.

34

Thank you for attention!