Nuclear matrix elements of double-beta decay by QRPA and attempt to extend RPA

J. Terasaki, Czech Technical Univ. in Prague

- 1. Nuclear matrix elements of $\beta\beta$ decay originality of my calculation
- 2. Nonlinear higher RPA by A. Smetana, F. Šimkovic, M. Krivorchenko, and J.T.

Two methods of QRPA approach under closure approx.

$$M^{(0v)} \cong \sum_{pp'nn'} \langle pp'|V(\bar{E})|nn'\rangle \langle 0_{f}^{+}|c_{p'}^{\dagger}c_{n'}c_{p}^{\dagger}c_{n}|0_{i}^{+}\rangle$$

$$\sum_{b_{f}:pnQRPA} |b_{f}\rangle\langle b_{f}| \sum_{b_{i}:pnQRPA} |b_{i}\rangle\langle b_{i}|$$

$$M^{(0v)} \cong \sum_{pp'nn'} \langle pp'|V(\bar{E})|nn'\rangle \langle 0_{\mathbf{f}}^{+}|c_{p'}^{\dagger}c_{n'}c_{p}^{\dagger}c_{n}|0_{\mathbf{i}}^{+}\rangle -c_{p'}^{\dagger}c_{p}^{\dagger}c_{n'}c_{n}$$

$$\sum_{b_{\mathbf{f}}: likeQRPA} |b_{\mathbf{f}}\rangle \langle b_{\mathbf{f}}| \sum_{b_{\mathbf{i}}: likeQRPA} |b_{\mathbf{i}}\rangle \langle b_{\mathbf{i}}|$$

The overlap of QRPA states

The QRPA ground state $|0_{QRPA,i}^+\rangle$ is defined as the vacuum of the QRPA quasiboson :

$$O_b^{\mathrm{i}} | 0_{\mathrm{QRPA,i}}^+ \rangle = 0$$

 O_b^1 : annihilation operator of QRPA state b

$$|0_{\text{QRPA,i}}^{+}\rangle = \prod_{K\pi} \frac{1}{\mathcal{N}_{\text{QRPA,i}}^{K\pi}} \exp[v_{\text{i}}^{(K\pi)}]|0_{\text{HFB,i}}^{+}\rangle,$$

$$v_{i}^{(K\pi)} \cong \sum_{\mu\nu\mu'\nu'} \frac{1}{1+\delta_{K0}} \left(Y^{i,K\pi} \frac{1}{X^{i,K\pi}} \right)^{\dagger}_{\mu\nu,\mu'\nu'} a_{\mu}^{i\dagger} a_{\nu}^{i\dagger} a_{\mu'}^{i\dagger} a_{\nu'}^{i\dagger}$$

$$O_{b}^{i\dagger} = \sum_{\mu\nu\mu'\nu'} \left(X_{\mu\nu,b}^{i,K\pi} a_{\mu}^{i\dagger} a_{\nu}^{i\dagger} - Y_{-\mu-\nu,b}^{i,K\pi} a_{-\nu}^{i} a_{-\mu}^{i} \right),$$

$$a_{\mu}^{\mathrm{i}}|0_{\mathrm{HFB,i}}^{+}\rangle=0.$$

J. Terasaki, PRC **87**, 024316 (2013)

Result for ¹⁵⁰Nd→¹⁵⁰Sm

HFB gs is used instead of QRPA gs in the overlap calculations.

$$M^{(0\nu)} = \sum_{K'=-\max K}^{\max K} \sum_{\pi} M^{(0\nu)}(K'\pi)$$

The value of my method

The product of the QRPA ground-state normalization factors=1.84

Comparison (150 Nd \rightarrow 150 Sm, g_A =1.25)

	J. T.	Fang et al. (Tübingen)
$\mathcal{M}^{(0\nu)}$	3.60	3.34
Method	Like-particle QRPA	PnQRPA
Residual interaction	Skyrme + volume pairing, no pn pairing	G matrix (CD Bonn) +pn pairing
Overlap calculation	1/normalization factors = 0.54	1/normalization factors = 1

The pn pairing interaction has an effect to reduce the NME.

D.-L. Fang et al., PRC **83**, 034320 (2011) J. Terasaki, PRC **91**, 034318 (2015)

Two paths in QRPA approach under closure approx.

$$\sum_{pp'nn'} \langle pp'|V(\bar{E})|nn'\rangle \sum_{d_{f}d_{i}:pnQRPA} \langle 0_{f}^{+}|c_{p'}^{\dagger}c_{n'}|d_{f}\rangle\langle d_{f}|d_{i}\rangle\langle d_{i}|c_{p}^{\dagger}c_{n}|0_{i}^{+}\rangle$$

$$\sum_{pp'nn'} \langle pp'|V(\bar{E})|nn'\rangle \sum_{b_{f}b_{i}:likeQRPA} \langle 0_{f}^{+}|c_{p'}^{\dagger}c_{p}^{\dagger}|b_{f}\rangle\langle b_{f}|b_{i}\rangle\langle b_{i}|c_{n}|c_{n'}|0_{i}^{+}\rangle$$

Pn-pairing int. is important for β decay. Like-particle pairing int. is important for two-particle transfer.

The equivalence of the two different paths provides us with a constraint on the strengths of the effective interactions having different roles in the QRPA.

This principle \rightarrow the strength of the T=0 pn-pairing int.

J.T. PRC **93**, 024317 (2016)

Other interactions used:

Skyrme SkM*, like-particle pairing, and Coulomb interaction

Pairing int.	150	ONd	150)Sm
(MeV fm³)	Proton	Neutron	Proton	Neutron
Like-ptcl.	-218.52	-176.36	-218.52	-181.65
<i>T</i> =0 (pn)	-197.44		-20	0.09

	¹⁵⁰ Nd→ ¹⁵⁰ Sm	2vββ nuclear matrix element
g _A =1.254 (bare value)	My cal.	0.0816
	Semiexp.	0.0368
g _A =1.000 (effective value)	My cal.	0.0849
	Semiexp.	0.0579

- Usually the semiexp. $2\nu\beta\beta$ nuclear matrix element is fitted by adjusting the strength of the pn pairing interaction in the QRPA approach.
- In my cal. that interaction strength is determined by an original theoretical method.
- Semiexp. value is obtained by the exp. half-life and phase-space factor including g_{A.}

Second part: extension of RPA – under development

We aim at solving

the discrepancy problem of the nuclear matrix elements between the different methods

One of what we can do is

extension of RPA to higher-order particle-hole correlations

Our choice of method for the extension

Nonlinear higher RPA (nhRPA) including the 2p-2h, ... for expressing the excitations on top of the ground state

NhRPA equation arXiv:1701.08368

Express excited state
$$|\Psi_k\rangle$$
 as Ground state $|\Psi_k\rangle = Q_k^\dagger |\Psi_0\rangle$ D.J.Rowe, Rev.Mod.Phys. **40**, $[H,Q_k^\dagger] |\Psi_0\rangle = E_{k0}Q_k^\dagger |\Psi_0\rangle$ 153 (1968)

Nonlinear and non-hermite eigeneq. in matrixvector form (extension of the RPA eq.)

Solved by iteration

- Hamiltonian matrix elements $\leftarrow |\Psi_0\rangle$ \blacktriangleleft
- Eigenvector \rightarrow components of Q_k^{\dagger}
- Eigenvalue $\rightarrow E_{k0}$

$$Q_k | \Psi_0 \rangle = 0 \rightarrow \text{Linear eq.}$$

• Solution vector \rightarrow components of $|\Psi_0\rangle$

Lipkin model

Level index
$$|\psi_0\rangle$$

$$1 \qquad \qquad \epsilon/2$$

$$0 \qquad \bullet \qquad \bullet \qquad \bullet \qquad -\epsilon/2$$

$$m = 1, \cdots \qquad N$$

Useful for test of theory, often used.

H.J. Lipkin et al., N.P.

62, 188 (1965)

$$H = \varepsilon J_Z + \frac{V}{2} \left(J_+^2 + J_-^2 \right)$$

$$J_z = \frac{1}{2} \sum_{m=1}^{N} \left(a_{1m}^{\dagger} a_{1m} - a_{0m}^{\dagger} a_{0m} \right)$$

$$J_{+} = \sum_{m=1}^{N} a_{1m}^{\dagger} a_{0m}, \qquad J_{-} = J_{+}^{\dagger}$$

Two subspace

$$\{ |\psi_0\rangle, J_+^2 |\psi_0\rangle, \cdots, J_+^N |\psi_0\rangle \}$$
 decoupled

$$\{\;J_{+}\left|\psi_{0}\right\rangle ,\cdots ,\;J_{+}^{N-1}\left|\psi_{0}\right\rangle \}$$

Achievement 1

We found that nhRPA is equivalent to exact Schrödinger eq. by solving the equations for the first time.

Relative error of
$$E_{k0}$$
 0.001 $\frac{|E_{k0}^o - E_{k0}^o(\text{exact})|}{|E_{k0}^o - E_{k0}^o(\text{exact})|}$ 1e-08 $\frac{|E_{k0}^o - E_{k0}^o(\text{exact})|}{|e-12}$ 1e-12 $\frac{|E_{k0}^o - E_{k0}^o(\text{exact})|}{|e-12}$ Iteration number $Q_k^{e\dagger} = c_k + \sum_{l=1}^{N/2} (X_{2l}^k J_+^{2l} + Y_{2l}^k J_-^{2l})$

This term has been overlooked by other groups years. Necessary for the subspace including the ground state.

Achievement 2

Comparison with shell model *under truncation of dimension of matrix used in calculation*

d: dimension of the matrix used in the calculation d of exact cal. = N/2 = 10

Reason

ason
$$Q_{k}^{\dagger}|\Psi_{0}\rangle = \left[\sum_{l=1}^{d}(X_{2l}^{k}J_{+}^{2l}+Y_{2l}^{k}J_{-}^{2l})+c_{k}\right] \sum_{i=0}^{d}\beta_{2i}J_{+}^{2i}|\psi_{0}\rangle$$

$$\text{Ground state}$$

$$\text{Eigeneq. with matrix}$$
of dimension d

- The highest order of J_{+}^{2l} of excited state = 4d
- Corresponding order of shell model = 2d

Unperturbed ground state

$$\sum_{i=0}^d \beta_{2i} J_+^{2i} | \psi_0 \rangle$$

Ground state

Linear eq. with matrix of Oth comdimension d

P-h component

$$Q_k | \Psi_0 \rangle = 0$$

ponent

Summary

- 1. Three originalities in calculation of $\beta\beta$ NME presented:
 - i. Like-particle QRPA
 - ii. Accurate overlap calculation
 - iii. Theoretical determination of the strength of T=0 pairing interaction

For $2\nu\beta\beta$ NME of ¹⁵⁰Nd, Cal./semiexp = 1.47, (g_A = 1.0).

- 2. Extension of RPA presented: nonlinear higher RPA
 - i. Equivalent to exact Schrödinger eq.
 - ii. High performance under truncation of wavefunction space
 - iii. Iteration necessary.