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Two methods of QRPA approach under closure approx.
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The overlap of QRPA states

The QRPA ground state |04grpa ;) is defined as the vacuum
of the QRPA quasiboson :

0119|O(-5RPA,i> =0
O;, : annihilation operator of QRPA state b

1 K
|05RPA,i> = HNK” exp[vi( 7T)]|01J—r11:13,i),

v Y VQRPA,i
.l.

(Km) 1 Yi,Kn 1 it it it _it
vi = 115 Xi,KT[ a‘u a, aufav/
I,/ KO I,/

uvu'v uv,u'v
it L,Km it it 1L,Km i i
0, = z (Xw’bau a, — Y_M_v,ba_va_u),
uwvp'v'

- 3
aHOHFB,i) = 0.
J. Terasaki, PRC 87, 024316 (2013)



Result for 1°Nd—150Sm

HFB gs is used instead of QRPA gs in the
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overlap calculations.

The value of
my method

The product of
the QRPA
ground-state
normalization
factors=1.84



Comparison (1°°Nd—150Sm, g,=1.25)

LT Fang et al.
- (Tubingen)

M) 3.60 3.34
Method Like-particle QRPA PnQRPA
Skyrme + volume G matrix (CD Bonn)
Residual interaction pairing, +pn pairing
no pn pairing
Overlao calculation 1/normalization 1/normalization
P factors = 0.54 factors=1

The pn pairing interaction has an effect to reduce the NME.

D.-L. Fang et al., PRC 83, 034320 (2011)
J. Terasaki, PRC 91, 034318 (2015)



Two paths in QRPA approach under closure approx.
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Pn-pairing int. is important for 3 decay.
Like-particle pairing int. is important for two-particle transfer.

Dependence on residual interaction is small
Overlap nnormalized overl

of QRPA = Tl' (Normahzatlon factors of the QRPA g.s.)
states




The equivalence of the two different paths
provides us with a constraint on the strengths

of the effective interactions having different
roles in the QRPA.

This principle — the strength of the T=0 pn-pairing int.

JT. PRC93, 024317 (2016)
Other interactions used:

Skyrme SkM*, like-particle pairing, and Coulomb interaction

Pairing int. 150Nd 150Sm
(MeV fm?3) Proton Neutron Proton Neutron
Like-ptcl. -218.52 -176.36 -218.52 -181.65

=0 (pn) -197.44 -200.09



2vBB nuclear matrix
15°Nd$1505m BB
element

g,=1.254 My cal. 0.0816
(bare value) Semiexp. 0.0368
g,=1.000 My cal. 0.0849
(effective value)  Semiexp. 0.0579

« Usually the semiexp. 2vB nuclear matrix element
s fitted by adjusting the strength of the pn pairing
Interaction in the QRPA approach.

* In my cal. that interaction strength is determined
by an original theoretical method.

« Semiexp. value is obtained by the exp. half-life
and phase-space factor including g,



Second part: extension of RPA —under development

We aim at solving

the discrepancy problem of the nuclear matrix
elements between the different methods

One of what we can do is

extension of RPA to higher-order particle-hole
correlations

Our choice of method for the extension

Nonlinear higher RPA (nhRPA)
iIncluding the 2p-2h, ... for expressing the
excitations on top of the ground state



NhRPA equation arXiv:1701.08368

Express excited state |¥; ) as Ground state

w =0y D.J.Rowe,
| k> le 0> Rev.Mod.Phys. 40,

(1, 0] 1%0) = EoQf|wo) 153 (1968)

Nonlinear and non-hermite eigeneq. in matrix-
vector form (extension of the RPA eq.)

 Hamiltonian matrix elements « |SU0)

* Eigenvector — components of Q,t
» Eigenvalue — Ejq

Solved by
iteration

Qx |¥o) = 0 — Linear eq.

» Solution vector — components of |¥)



Lipkin model

Level index ¥o) Energy
1 g/2
) 0000000 —&/2
m = 1’ coe N

H=efz+§oz+fz)

Useful for test of theory,

often used.
H.J. Lipkin et al., N.P.
62, 188 (1965)

Two subspace
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Achievement 1

We found that nhRPA is equivalent to exact Schrodinger eq.
by solving the equations for the first time.
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This term has been overlooked by other groups years.
Necessary for the subspace including the ground state.



Achievement 2

Comparison with shell model under truncation of

dimension of matrix used in calculation
0.8

____d=2
0.6 |
. d=3
Wy 04 ¢ d=4
0.2 /— \ \ Y J |
/ \ Shell model with truncation

Exact (shell model, NhRPA(d = 2)
d =10)

d: dimension of the matrix used In the calculation
d of exact cal. = N/2 =10



Reason QT Unperturbed
f ground state
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Summary

1. Three originalities in calculation of B3 NME presented:

I. Like-particle QRPA

Iil. Accurate overlap calculation

lil. Theoretical determination of the strength of T=0
pairing interaction

For 2vpp NME of 1°°Nd, Cal./semiexp = 1.47, (g,= 1.0).

2. Extension of RPA presented: nonlinear higher RPA

I.  Equivalent to exact Schrodinger eq.

Ii. High performance under truncation of wavefunction
space

lil. Iteration necessary.



