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1. Nuclear matrix elements of 𝛽𝛽 decay – originality of 

my calculation



Two methods of  QRPA approach under closure approx.
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The overlap of  QRPA states

The QRPA ground state ȁ0QRPA,𝑖
+ 〉 is defined as the vacuum 

of the QRPA quasiboson :

𝑂𝑏
i 0QRPA,i

+ = 0

𝑂𝑏
i : annihilation operator of QRPA state 𝑏

ȁ0QRPA,i
+ 〉 =ෑ

𝐾𝜋

1

𝒩QRPA,i
𝐾𝜋 exp[𝑣i

(𝐾𝜋)
]ȁ0HFB,i

+ 〉 ,

𝑣i
(𝐾𝜋)

≅ ෍

𝜇ν𝜇′ν′

1

1 + 𝛿𝐾0
𝑌i,𝐾𝜋

1

𝑋i,𝐾𝜋

𝜇𝜈,𝜇′ν′

†

𝑎𝜇
i†𝑎𝜈

i†𝑎
𝜇′
i†𝑎

𝜈′
i†

𝑂𝑏
i† = ෍

𝜇𝜈𝜇′𝜈′

𝑋𝜇𝜈,𝑏
i,𝐾𝜋𝑎𝜇

𝑖†𝑎𝜈
𝑖† − 𝑌−𝜇−𝜈,𝑏

i,𝐾𝜋 𝑎−𝜈
i 𝑎−𝜇

i ,

𝑎𝜇
i ȁ0HFB,i

+ 〉 = 0.

J. Terasaki, PRC 87, 024316 (2013)



Result for

The value of 

my method

HFB gs is used instead of QRPA gs in the 

overlap calculations.
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150Nd→150Sm

The product of 

the QRPA 

ground-state 

normalization 

factors=1.84



J. T. 
Fang et al. 
(Tübingen)

M(0v) 3.60 3.34

Method Like-particle QRPA PnQRPA

Residual interaction
Skyrme + volume 
pairing,
no pn pairing

G matrix (CD Bonn)
+pn pairing

Overlap calculation
1/normalization 
factors = 0.54

1/normalization
factors = 1

Comparison (150Nd→150Sm, gA=1.25)

The pn pairing interaction has an effect to reduce the NME.

D.-L. Fang et al., PRC 83, 034320 (2011)
J. Terasaki, PRC 91, 034318 (2015)



Unnormalized overlap 

Two paths in QRPA approach under closure approx.
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Pn-pairing int. is important for β decay.

Like-particle pairing int. is important for two-particle transfer.

(Normalization factors of the QRPA g.s.)
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Dependence on residual interaction is small
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The equivalence of  the two different paths 

provides us with a constraint on the strengths 

of  the effective interactions having different 

roles in the QRPA.

This principle → the strength of the T=0 pn-pairing int.

Other interactions used:

Skyrme SkM*, like-particle pairing, and Coulomb interaction

J.T. PRC 93, 024317 (2016)

Pairing int.
(MeV fm3)

150Nd 150Sm

Proton Neutron Proton Neutron

Like-ptcl. -218.52 -176.36 -218.52 -181.65

T=0 (pn) -197.44 -200.09



150Nd→150Sm
 nuclear matrix 
element

gA=1.254
(bare value)

My cal. 0.0816

Semiexp. 0.0368

gA=1.000
(effective value)

My cal. 0.0849

Semiexp. 0.0579

• Usually the semiexp.  nuclear matrix element 

is fitted by adjusting the strength of the pn pairing 

interaction in the QRPA approach.

• In my cal. that interaction strength is determined 

by an original theoretical method.

• Semiexp. value is obtained by the exp. half-life 

and phase-space factor including gA.



Second part: extension of RPA – under development

the discrepancy problem of the nuclear matrix 

elements between the different methods

We aim at solving 

One of  what we can do is 

extension of RPA to higher-order particle-hole 

correlations

Our choice of  method for the extension

Nonlinear higher RPA (nhRPA)

including the 2p-2h, … for expressing the 

excitations on top of the ground state



NhRPA equation

Express excited state ൿห𝛹𝑘 as

ൿห𝛹𝑘 = 𝑄𝑘
† ൿห𝛹0

Ground state

𝑄𝑘 ൿห𝛹0 = 0 → Linear eq.

Nonlinear and non-hermite eigeneq. in matrix-

vector form  (extension of the RPA eq.)

arXiv:1701.08368

𝐻,𝑄𝑘
† ൿห𝛹0 = 𝐸𝑘0𝑄𝑘

† ൿห𝛹0

• Hamiltonian matrix elements ← ൿห𝛹0

• Eigenvector → components of 𝑄𝑘
†

• Eigenvalue → 𝐸𝑘0

• Solution vector → components of ൿห𝛹0

Solved by 

iteration

D.J.Rowe, 
Rev.Mod.Phys. 40, 
153 (1968)
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Useful for test of theory,

often used.
H.J. Lipkin et al., N.P.
62, 188 (1965)
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decoupled



Achievement 1

Iteration number
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This term has been overlooked by other groups years.
Necessary for the subspace including the ground state. 

N = 4, 𝜀 = 1

We found that nhRPA is equivalent to exact Schrödinger eq.

by solving the equations for the first time.

Relative error of 𝐸𝑘0

𝐸𝑘0
𝑜 − 𝐸𝑘0

𝑜 (exact)

𝐸𝑘0
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Achievement 2 

Comparison with shell model under truncation of  
dimension of  matrix used in calculation

d: dimension of the matrix used in the calculation

d of exact cal. = N/2 = 10

Exact (shell model, 
d =10)

NhRPA(d = 2)

Shell model with truncation

d=2

d=3

d=4



Reason
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• The highest order of 𝐽+
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excited state = 4d

• Corresponding order of shell 

model = 2d

Eigeneq. with matrix 

of dimension d Linear eq. with 

matrix of  

dimension d

𝑄𝑘 ൿห𝛹0 = 0

0th com-
ponent

P-h component



Summary

1. Three originalities in calculation of  NME presented:

i. Like-particle QRPA

ii. Accurate overlap calculation

iii. Theoretical determination of the strength of T=0 

pairing interaction

For 2 NME of 150Nd, Cal./semiexp = 1.47, (gA = 1.0).

2. Extension of RPA presented: nonlinear higher RPA

i. Equivalent to exact Schrödinger eq.

ii. High performance under truncation of wavefunction  

space

iii. Iteration necessary.


