

cryogenic calorimeter with particle identification for double beta decay search

Ezio Previtali – INFN Milano Bicocca

Cuore Upgrade with Particle IDentification

1. arXiv:1504.03612 [pdf, other]

R&D towards CUPID (CUORE Upgrade with Particle IDentification)

The CUPID Interest Group

Subjects: Instrumentation and Detectors (physics.ins-det); High Energy Physics - Experiment (hep-ex); Nuclear Experiment (nucl-ex)

2. arXiv:1504.03599 [pdf, ps, other]

CUPID: CUORE (Cryogenic Underground Observatory for Rare Events) Upgrade with Particle IDentification

The CUPID Interest Group

Subjects: Instrumentation and Detectors (physics.ins-det); High Energy Physics - Experiment (hep-ex); Nuclear Experiment (nucl-ex)

In the middle of 2015 INFN decided to support CUPID activity to develop:

CUPID-0: a scintillating bolometer (ZnSe) experiment as small scale demonstrator Some R&D to optimize cryogenic light detector performances Collaboration with other research groups were established and under definition

ββ Decay Searches

WHAT WE ARE LOOKING FOR

$$2\nu\beta\beta$$
: $(A,Z) \to (A,Z+2) + 2e^- + 2\bar{\nu}_e$

• allowed in the SM and already observed with $T_{1/2} > 10^{18}$ y

 $\mathbf{0}\mathbf{v}\mathbf{\beta}\mathbf{\beta}$: $(A,Z) \rightarrow (A,Z+2)+2e^{-}$

- not allowed in the SM
- expected with $T_{1/2} > 10^{25} \text{ y}$

If observed:

- lepton number violation
- neutrinos are Majorana particles
- measures effective electron neutrino mass

$$m_{\beta\beta} \equiv |e^{i\alpha_1}|U_{ei}^2|m_1 + e^{i\alpha_2}|U_{e2}^2|m_2 + |U_{e3}^2|m_3|$$

EXPERIMENTAL SIGNATURE

Approach: SOURCE = DETECTOR

Main signature:

Peak at Q-value over $2\nu\beta\beta$ tail enlarged only by detector resolution

EXPERIMENTAL SENSITIVITY

Lifetime corresponding to the minimum detectable number of events over background at a given C.L.:

$$S^{0\nu} \propto \epsilon i. a. \sqrt{\frac{MT}{b\Delta E}}$$
 $b \neq 0$
 $S^{0\nu} \propto \epsilon i. a. MT$ $b = 0$

M: Total active mass in kg

 ϵ : Detector efficiency

i.a.: Isotopic abundance

b: Background in c/keV/kg/y

 ΔE : Detector resolution

@ ROI in keV

T: Exposure time in y

Bolometric ββ Decay Experiments (I)

To improve the sensitivity it is necessary to reduce the experimental background.

- Estimated background for CUORE ≈ 10⁻² counts/(keV kg year)
- Designed background for CUPID ≈ 10⁻⁴ counts/(keV kg year)

Bolometric ββ Decay Experiments (II)

A careful selection of the $\beta\beta$ isotopes

Help in reducing β/γ background But isotope enrichment is needed To reduce experimental background

 α/β discrimination is needed

Energy-degraded alpha background

Scintillating Bolometers

Light Reflector

Simultaneous read-out of Photons and Phonons

High energy resolution: as bolometer
High discrimination capability: as scintillator

ZnSe Scintillating Bolometers

For CUPID-0 experiment 82Se enriched @URENCO(96%)

Enriched powder activity (HP-Ge)			
Isotope	Upper limit 90% CL $(oldsymbol{\mu}$ Bq/kg $)$		
²³² Th	<61		
²³⁸ U	<110		
²³⁵ U	<74		

Zn⁸²Se grew @ISMA (Ukraine) Final enrichment 95% in ⁸²Se

Discrimination potential @ ROI:

$$DP(E) = rac{\left|\mu_{lpha}(E) - \mu_{eta\gamma}(E)
ight|}{\sqrt{\sigma_{lpha}^2(E) + \sigma_{eta\gamma}^2(E)}}$$

Heat channel DP@ROI = 2

Light channel DP@ROI = 11

Full rejection of a events shapeHEAT+shapeLIGHT+light

ZnSe crystals show:

- Excellent light/heat discrimination α scintillates more then β
- Excellent pulse shape discrimination especially on light signal

Zn82Se Crystal Characterization

A cryogenic measurement with 3 Zn82Se crystals was performed in 2016

Zn⁸²Se bolometers work properly Zn⁸²Se crystals show similar performances Ge light detectors work very well

To discriminate α respect to β/γ :

- Cuts on light signal amplitudes
- Cuts on light **signal shapes**

Excellent discrimination potential was measured for Zn⁸²Se bolometers as for ZnSe

Zn82Se Crystal Background

Eur. Phys. J. C76 (2016) 7, 364.

	$ m Zn^{82}Se\text{-}1$ $[\mu Bq/kg]$	$Zn^{82}Se-2$ [$\mu Bq/kg$]	$Zn^{82}Se-3$ [$\mu Bq/kg$]	Array $[\mu \mathrm{Bq/kg}]$
$^{232}\mathrm{Th}$	13 ± 4	13 ± 4	<5	7 ± 2
$^{228}{ m Th}$	32 ± 7	30 ± 6	22 ± 4	26 ± 2
$^{224}\mathrm{Ra}$	29 ± 6	26 ± 5	23 ± 5	27 ± 3
²¹² Bi	31 ± 6	31 ± 6	23 ± 5	29 ± 3
$^{238}\mathrm{U}$	17 ± 4	20 ± 5	<10	10 ± 2
$^{234}\mathrm{U} + ^{226}\mathrm{Ra}$	42 ± 7	30 ± 6	23 ± 5	33 ± 4
$^{230}\mathrm{Th}$	18 ± 5	19 ± 5	17 ± 4	18 ± 3
²¹⁸ Po	20 ± 5	24 ± 5	21 ± 5	21 ± 2
$^{210}{ m Pb}$	100 ± 11	250 ± 17	100 ± 12	150 ± 8

Background test measurement: 530 h live time

Considerations on α background spectrum:

- U and Th chains practically @ equilibrium
- Energies of α peaks indicate **internal contamination**
- ²¹⁰Po seems to be on surfaces (5.3/5.4 MeV peaks)
- Contribution outside the peaks seems not critical

All Zn⁸²Se crystals show comparable contamination

CUPID-0 Experiment

cupid in the Cuoricinocuore-o dilution refrigerator placed in the Hall A of LNGS 24 **Zn**⁸²**Se** bolometers, for a total mass \approx **5.1 kg of** ⁸²**Se** 2 ZnSe bolometer \approx 400 g each, not enriched in ⁸²Se $Q_{88}(^{82}Se) = 2996 \text{ keV}$

Light detectors high purity Ge wafers with antireflecting coating Thermal sensors made with NTD thermistors

Detector assembled in 5 towers in Cuoricino/CUORE-0 cryostat

Total active mass of the detector ~10.5 kg

Expected background @ ROI 10⁻³ count/(keV kg year) Expected FWHM energy resolution @ ROI 20 keV

CUPID-0 Experiment

cupid-0 is installed in the Cuoricinocuore-0 dilution refrigerator placed in the Hall A of LNGS 24 **Zn**⁸²**Se** bolometers, for a total mass ≈ 5.1 kg of ⁸²Se 2 ZnSe bolometer ≈ 400 g each, not enriched in ⁸²Se $Q_{88}(^{82}Se) = 2996$ keV

Light detectors high purity Ge wafers with antireflecting coating Thermal sensors made with NTD thermistors

Detector assembled in 5 towers in Cuoricino/CUORE-0 cryostat

Total active mass of the detector ~10.5 kg

Expected background @ ROI 10⁻³ count/(keV kg year) Expected FWHM energy resolution @ ROI 20 keV

CUPID-0 Assembly

Gluing

1st LD installation

ZnSe crystal fixed

Tower Completed

2nd LD installation

CUPID-0 Installation

CUPID-0 detector is installed in **the former Cuoricino/CUORE0 dilution refrigerator** inside Hall A of LNGS Underground Labs

Some upgrades were done on cryogenic system:

- New double pendulum system to reduce vibrational noise
- Upgrade of the radon abatement system to reduce ²¹⁴Bi
- New cryostat wiring to measure up to 120 detectors

However we cannot change the thermal shields!!!

Beginning of 2017 detector commissioning phase start

- Optimization of detector performances
- Calibration of alpha and beta scales
- Analysis of the discrimination capabilities

End of March 2017 the commissioning phase was finalized and the experimental **data taking has started**

CUPID-0 Characterization

Channel ID

All ZnSe and light detectors work correctly

Excellent scintillating performances

Very low noise for light and heat channels

But

Energy resolution **on heat channels** not optimal Average **FWHM @ 2.6** MeV around **25 keV** Main contribution comes **from crystal quality**

There are room for improvements

α/β Discrimination

Two methods can be applied:

- Light signal shapes
- Light vs heat signal

α/β Discrimination Potential is high

Looking to light signal shape analysis no overlap between α and β signal characteristics was observed

Optimization of the DP is ongoing

CUPID-0 Data Taking

0.89 kg x y of exposure of ZnSe 0.47 kg x y exposure of 82Se

The first phase of CUPID-0 data taking is on going reasonably well

Some critical problems were solved

We plan to increase the Physics running time to more then 70% of the measurement time

CUPID-0 Background

Background energy spectrum
Relevant contributions come from:

- 65Zn activation of crystals
- ⁴⁰K from **experimental setup**
- ²⁰⁸Tl from the **dilution refrigerator**
- 2vDBD 82Se

Data analysis is ongoing

Data on background in the ROI will be presented soon

Sensitivity of CUPID-0

Based on our MC simulation model of the CUPID-0 detector and assuming:

- Energy resolution = 30 keV FWHM
- Discrimination potential = 12
- Measured contamination as crystal internal background

It is possible to evaluate the **expected background in the ROI** of 82 Se $0v\beta\beta$ decay

Eur. Phys. J. C76 (2016) 7, 364.

Background at 82 Se Q_{etaeta} (counts/keV/kg/y)				
after $lpha$ discrimination	4×10^{-3}			
coincidences rejection	2.3×10^{-3}			
$^{208}\text{TI} - ^{212}\text{Bi time delay rejection}$	1×10^{-3}			
+ cryostat γ contamination	$< 1.5 \times 10^{-3}$			

 $T_{1/2}$ (0v $\beta\beta$ ⁸²Se) = 7 x 10²⁴ years (90% cl) (x 1 year data taking, 0 background approx.)

Conclusions

- The installation and the commissioning of CUPID-0 are completed
- All the bolometers are working properly
- Preliminary tests of Zn⁸²Se detector tower show good performances
- Energy resolution is limited by the quality of the Zn⁸²Se crystals
- Very **high discrimination potential for** α **background** rejection is shown
- Data taking is ongoing
- First background and 0vDBD 82Se result will be presented soon