

$\begin{tabular}{l} 100Mo-enriched Li_2MoO_4$ scintillating bolometers for $0\nu2\beta$ decay search: from LUMINEU to CUPID-0/Mo projects \end{tabular}$

D.V. Poda on behalf of the LUMINEU Collaboration

CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay, France Institute for Nuclear Research, MSP 03680 Kyiv, Ukraine

in cooperation with

MEDEX'17 meeting, Prague, 01 June 2017

LUMINEU and its follow up (CUPID-0/Mo)

Luminescent Underground Molybdenum Investigation for NEUtrino mass and nature

http://lumineu.in2p3.fr

Initially involved institutions:

CSNSM and IAS Orsay, ICMCB Bordeaux, CEA Saclay (**France**); INR Kyiv (**Ukraine**); NIIC Novosibirsk (**Russia**); KIP Heidelberg (**Germany**); INFN Milano Bicocca (**Italy**)

Further involved participants:

EDELWEISS collaboration (**France, Germany, UK, Russia**); ITEP Moscow (**Russia**); **INFN / LUCIFER** coll. LNGS/Rome (**Italy**)

New participants:

LAL Orsay (**France**); Fudan Shanghai, USTC Hefei (**China**); MIT Massachusetts, UCLA California, UCB and LBNL Berkley (**USA**)

R&D of the technology based on ^{100}Mo -containing scintillating bolometers for a next-generation $0\nu2\beta$ experiment

- Development of ZnMoO₄ / Li₂MoO₄ based scintillating bolometers
- > A pilot $0\nu 2\beta$ experiment with up to ~1 kg of ¹⁰⁰Mo: LUMINEU project
- Extension to ~5 kg of ¹⁰⁰Mo: CUPID-0/Mo project to prove the technology in view of CUPID (CUORE follow-up)

The choice of ¹⁰⁰Mo-containing scintillator

Advantages

Low light yield of Li_2MoO_4 (~x0.5 of ZnMoO₄ at ~10 mK) 0

D.V. Poda

0

0

0

0

The choice of scintillating bolometer approach

D.V. Poda

LUMINEU R&D of ¹⁰⁰Mo-enriched Li₂MoO₄ crystals

LUMINEU protocol of LMO production

¹⁰⁰Mo-enriched molybdenum

1 kg (¹⁰⁰Mo~99%; KINR) + 10 kg (¹⁰⁰Mo~97%; ITEP)

Deep purification of enriched material sublimation in vacuum

recrystallization from aqueous solutions

- Advanced crystallization technology low-thermal-gradient Czochralski crystal growth possible size: Ø6 cm; 14 cm length of cylindrical part
- Dedicated R&D to control ⁴⁰K content in LMO selection of ultra-pure Li₂CO₃ powder LMO growth by double crystallization R&D of Li₂CO₃ purification is in progress
- Extraction of ¹⁰⁰MoO₃ from residues

arXiv:1704.01758 (Submitted to EPJC)
Submitted to Cryst. Eng. Comm.

✓ Developed large mass ¹⁰⁰Mo-enriched LMO

high optical quality and scintillation properties high crystal yield (~ 80-85%) low irrecoverable losses of ¹⁰⁰Mo (~3%)

Ready for a batch production of $Li_2^{100}MoO_4$ crystals

$Li_2MoO_4 \sim 0.8 \text{ kg}$

D.V. Poda

MEDEX'17 meeting

5

Li₂MoO₄ crystals for low temperature tests

Full cycle of LMO growth in NIIC (Russia)

> Deeply purified MoO₃ powder

Commercial MoO_3 with natural isotopic abundance ¹⁰⁰Mo-enriched Molybdenum (97%) used in NEMO-3

- Commercial Li₂CO₃ powder Novosibirsk Rare Metal Plant (Russia), by default Alfa Aesar (USA), for LMO-3 only
- Solid state synthesis of Li₂MoO₄ compound
- > LTG Cz growth from Pt crucible in air atmosphere
- > Cutting, extraction of MoO₃ from residues

arXiv:1704.01758; Submitted to Cryst. Eng. Comm.

Nuclide	Activity (mBq/kg)						
	NRMP	Alfa Aesar	Sigma- Aldrich				
²²⁸ Ra	≤ 2.9	≤ 14	16(8)				
²²⁸ Th	≤ 3.7	12(4)	13(4)				
²²⁶ Ra	≤ 3.3	705(30)	53(6)				
⁴⁰ K	≤ 4 2	≤ 4 2	210(70)				

ScintillatorMo purificationSubl.Recryst.	Mo purification		Boule	Produced elements			
	crystalli- zation	ID	Size (mm)	Mass (g)			
Li ₂ MoO ₄	Single	Double	Single	LMO-1	Ø40×40	151	
	Single	Double	Double	LMO-2	Ø 50 ×40	241	
	Single	Double	Single	LMO-3	Ø 50 ×40	242	
Li ₂ ¹⁰⁰ MoO ₄	Double	Double	Triple	enrLMO-1t enrLMO-1b	Ø44×40 Ø44×44	186 204	
	Double	Double	Double	enrLMO-2t enrLMO-2b	Ø44×46 Ø44×44	213 207	

Used underground cryogenic facilities

From single Li₂MoO₄ module to x4 Li₂¹⁰⁰MoO₄ array

D.V. Poda

8

Tests of Li₂MoO₄-based scintillating bolometers

Detector	Crystal ID	Crystal mass (g)	Light detector standard	Lab	Tempera- ture (mK)	Acquired data (h)
Li ₂ MoO ₄	LMO-1	151	IAS	LNGS	11	328
	LMO-2 LMO-3	241 242	LUCIFER IAS	LNGS	11	201
Li ₂ ¹⁰⁰ MoO ₄	enrLMO-1b	204	LUCIFER	LNGS	12	487
	enrLMO-1t	186	LUMINEU	LSM	19	2090
	enrLMO-1t enrLMO-1b enrLMO-2t enrLMO-2b	186 204 213 207	LUMINEU	LSM	17	2570

Ge light detector by	Diameter (mm)	Thickness (mm)	Antireflecting coating	NTD mass (mg)
IAS	25-40	0.03-0.04	No	~1
LUCIFER	45	0.30	No	9
LUMINEU	44	0.17	70 nm SiO	5-9

arXiv:1704.01758

Performance & radiopurity of Li₂MoO₄ bolometers

D.V. Poda

MEDEX'17 meeting

01 June 2017 10

LUMINEU light detectors performance

Light detectors coupled to Li₂¹⁰⁰MoO₄ bolometers

Good reproducibility of "standard" high performance

Performance of Li₂¹⁰⁰MoO₄ bolometers

enrLMO-#	1	1t		b	2t	2b
	20 mK	17 mK	17 mK	12 mK	17 mK	17 mK
Signal [nV/keV]	32	40	47	89	50	48
FWHM [keV] @ 0 keV	~1.2	~1.0	~1.2	~1.2	~2.4	~2.0
FWHM [keV] @ 2615 keV	6.3±0.6	5.8±0.6	5.7±0.6	5.0±0.6	5.5±0.5	5.7±0.6
Pb, 238.6 Pb, 238.6 2^{08} Tl, 510.8, 583.2 2^{28} Ac, 911.2 964.8, 90 964.8, 90 7^{208} Tl, 2614.5 keV 10^{-1} 1	enrLMO enrLMO	at LNGS (0.7 kg× at LSM (5.4 kg×d ²⁰⁸ Tl, 2614.5 SE	(d) (b) (c) (d) (c) (c) (c) (c) (c) (c) (c) (c	• enrLMO at LNG • enrLMO at LNG • $\sim 5-6$ • $Q_{\beta\beta}$ 100 • 500 1000	5 keV FWH Mo (3034	$Q_{\beta\beta}$ (¹⁰⁰ Mc M keV) 2500 3000 Energy
500 1000	1500 2000	Energy (ke	00 V)	Exceller	nt perform	mance
D.V. Poda		MEDE	X'17 meetina			01 June 20

01 June 2017 12

Neutron spectroscopy with Li₂¹⁰⁰MoO₄ bolometers

Prospects for in-situ neutron detection

Light-assisted particle identification for Li₂¹⁰⁰MoO₄

enrLMO-#	1t		1b		2t	2b
M3 reflecting foil	yes	no	yes	no	yes	yes
LY _{γ(β)} [keV/MeV]	n.a.	0.41	0.77	0.38	0.73	0.74
$DP_{\alpha/\gamma(\beta)\prime} > 2.5 \text{ MeV}^*$	18	9	12	9	14	14

* - Data selection for DP: $\gamma(\beta)$'s in 2.5-2.7 MeV, α 's ~ 5.4 MeV_{ae} ²¹⁰Po or ~ 4.8 MeV_{ae} ⁶Li(n,t) α

D.V. Poda

Particle identification by heat channel

LMO-1, AmBe (20 h), 2 kSPS sampling rate

Ability to particle identification by only heat signals

First background measurements with Li₂¹⁰⁰MoO₄

Background measurements with 4 Li₂¹⁰⁰MoO₄ array

D.V. Poda

MEDEX'17 meeting

01 June 2017 17

α Background of Li₂¹⁰⁰MoO₄ detectors

α Background of Li₂¹⁰⁰MoO₄ detectors

$\gamma(\beta)$ Background of Li₂¹⁰⁰MoO₄ detectors

Position dependent γ(β) rate inside the EDELWEISS set-up ²⁰⁸Tl rate is ~x40 of CUORICINO background Work is in progress to reduce the external ²³²Th background

D.V. Poda

Sensitivity to $0\nu 2\beta$ decay of ¹⁰⁰Mo

Li₂¹⁰⁰MoO₄ bolometers, Bkg, qc−rb data (38.8 kg d), LSM

High potential of scintillating bolometers approach

LUM INEU Investigation of $2\nu 2\beta$ decay of ¹⁰⁰Mo

LUMINEU follow-up: CUPID-0/Mo

□ CUPID-0/Mo Phase I (20 crystals):

- ➤ 20 ¹⁰⁰Mo-enriched (97%) Li₂MoO₄ (\emptyset 44×45 mm, 0.21 kg each; 4.18 kg total) \Rightarrow 2.34 kg of ¹⁰⁰Mo (1.37×10^{25 100}Mo nuclei)
- > 20 Ge light detectors (Ø44×0.175 mm)+SiO
- EDELWEISS set-up @ LSM (France)

□ CUPID-0/Mo Phase II (20+20 crystals):

- Additional 20 Li₂¹⁰⁰MoO₄
- CUPID-0 set-up @ LNGS (Italy) or CROSS set-up @ Canfranc (Spain)

D.V. Poda

CUPID-0/Mo sensitivity

- ROI = 10 keV window
- > Efficiency = 69% $\epsilon_{0v2\beta} = 73\%, \epsilon_{PSD} = 95\%$
- BI = 10⁻³ cnts/yr/kg/keV Options (1) and (2) are substantially unchanged by BI = 10⁻² cnts/yr/kg/keV

(lower $T_{1/2}$ by 6%, 16%, 37%)

 $T_{1/2}$ sensitivity CUPID-0/Mo $< m_{\beta\beta} >$ configuration [yr] 90% CL [eV] $\textbf{1.3}\times\textbf{10}^{\textbf{24}}$ 0.33-0.56 20×0.5 cr.×yr (1) 4.0×10^{24} 0.19-0.32 (2)20×1.5 cr.×yr 1.5×10^{25} (3)40×3.0 cr.×yr 0.10-0.17

Summary

Prospects of Li₂¹⁰⁰MoO₄ scintillating bolometers for high-sensitivity 0_ν2β searches have been unambiguously proved by results of LUMINEU project

- \checkmark Developed mass production technology of high quality radiopure Li₂¹⁰⁰MoO₄
- ✓ Established technology of high performance $Li_2^{100}MoO_4$ bolometers array
- ✓ Achieved reasonably high sensitivity to 100 Mo $0\nu2\beta$ decay of over a short exposure
- ✓ Performed one of the most precise measurements of the $2\nu 2\beta$ decay half-life of ¹⁰⁰Mo

LUMINEU is extended to CUPID-0/Mo 2β experiment as a demonstrator of the Li₂¹⁰⁰MoO₄ scintillating bolometer technology for CUPID project

- > $\beta\beta$ Source: ~5 kg of ¹⁰⁰Mo embedded in 40 Li₂¹⁰⁰MoO₄ crystals 0.2-kg each
- Start by: end of 2017 (20 crystals) and mid. 2018 (20+20 crystals)
- > Ambitious results in 3 yr: the best accurate ¹⁰⁰Mo $2v2\beta$ half-life value and one of the highest sensitivity to effective Majorana neutrino mass
- > Main goal: demonstration of the LUMINEU technology viability for CUPID, next generation 1t-scale bolometric $0v2\beta$ project (CUORE follow up)