

MEDEX 17

Results from CUORE and CUORE0

Ονββ Experimental signature

Observable: line at Q-value

- Measure $E_{\beta\beta} = E_{\beta 1} + E_{\beta 2}$
- Smeared by energy resolution
- Q depends on the isotope

If observed:

exposure time

$$T_{1/2}^{0v} = \ln(2) \cdot N_{\beta\beta} \cdot \frac{t}{N_{0v\beta\beta}} \cdot \varepsilon$$
num. of active nuclei events in the peak

B

Physics Implications

- Lepton number violation $\Delta L = 2$
- $\mathbf{v} = \overline{\mathbf{v}}$ (some kind of Majorana mass contribution)

$$\qquad \qquad \Big(T_{1/2}^{0\nu}\Big)^{-1} = G^{0\nu}(Q,Z) \left|M_{nucl}^{0\nu}\right|^2 \frac{\langle m_{\beta\beta}^2\rangle}{m_e^2} \qquad \qquad \text{Effective Majorana mass}$$

Half-life (to be measured)

Phase space (calculated)

(calculated) Nuclear matrix element (calculated)

$$m_{\beta\beta} = f\left(\Delta m_{12}, \Delta m_{23}, m_1\right)$$

- perhaps indications about the mass hierarchy
- constraints on absolute mass scale

Bolometric approach: $E \rightarrow \Delta T$

Source = Detector

- ► 2e⁻ mostly contained in the bulk
- little (no) energy escape
- excellent efficiency
- excellent energy resolution
- hardly discriminate signal from bkg

Arrangement of bolometers in 2x2 arrays

$$\Delta T = \frac{E}{C(T)}$$
 $C \propto \left(\frac{T}{\theta_D}\right)^3$

Requires low heat capacity low temperatures

CUORE bolometers: TeO₂ crystals

TeO_2 :

 130 Te abundance = 34%

$$Q = 2528.5 \text{ keV}$$

With:

$$E = I MeV$$

$$C \sim 10^{-9} \text{ J/K at } 10 \text{ mK}$$

$$\Delta T = 0.1 \frac{mK}{MeV}$$

Thermistor Readout: $\Delta T \rightarrow \Delta V$

Crystals are read out by a ``Neutron Transmutation Doped'' Germanium thermistor (NTD)

$$R_{th}=R_0e^{\left(rac{T_0}{T}
ight)^{\gamma}}=rac{V_{th}}{I_{bias}}$$
 Readout ΔV Maintain a constant current

Set I_{bias} working point where signal amplitude is maximum

Typical signal pulse shape

Sensitivity

May be expressed as the half-life that yields a signal hidden by a fluctuation of the background:

For our detector the background approximately scales with the mass and the rate can be assumed to be constant

Experimental parameters where improvement produces better sensitivity

$$S_{T_{1/2}} = n_{\sigma} \sqrt{B}$$

$$B = b \cdot M_{tot} \cdot t \cdot \Delta E$$

B

The CUORE phased program

Radioactive contamination of materials

CUORE-0:

test background reduction strategy:

- ► cleaning & storage
- ▶tower assembly

c/(keV · kg · yr)	0νββ region	α region (2700-3900 keV – Pt peak)
CUORICINO	0.169 ± 0.006	0.110 ± 0.001
CUORE-0	0.058 ± 0.004	0.016 ± 0.001

Radioactive contamination drives the Cuoricino/CUORE-0 bkg in the ROI

- $ightharpoonup \gamma$ of ²⁰⁸TI from cryostat
- decay products of ²³⁸U and ²³²Th from crystal and Cu surface

Parts cleaning and storage

Copper:

- Pre-cleaning (remove machining residuals)
- Tumbling (mechanical abrasion $\sim 1 \, \mu$ m)
- Electropolishing ($\sim 100 \, \mu \text{m}$ abrasion)
- 4. Chemical etching ($\sim 10 \mu m$)
- 5. Plasma etching (2 μ m)
- 6. Packaging in vacuum

Crystals:

- Produced by Shanghai Institute of Ceramics
- Grown from high purity TeO₂ powder and Te metal
- Shipped to LNGS by sea in vacuum bags + boxes
- Stored underground in nitrogen-fluxed cabinets

Crystal gluing, bonding and tower assembly

CUORE-0 results

CUORE-0 + Cuoricino $0\nu\beta\beta$ limit : $T_{1/2} > 4.0 \times 10^{24} \text{ y } (90\%\text{C.L.})$

 $m_{\beta\beta} < 270 - 760 \text{ meV}$

[Physical Review Letters 115, 102502 (2015)]

CUORE-0 energy resolution:

$$\Delta E = 5.1 \pm 0.3 \text{ keV FWHM}$$

Axial coupling constant $g_A = 1.269$

Niccolò Mogg

G^{0v}: Phys. Rev. C 85, 034316 (2012)

NME Phys. Rev. C 91, 034304 (2015) IBM-2

Phys. Rev. C 87, 045501 (2013) QRPA

Phys. Rev. C 91, 024613 (2015) QRPA

Nucl. Phys. A 818, 139 (2009)

Phys. Rev. Lett. 105, 252503 (2010) EDF

Phys. Rev. C 91, 024309 (2015)

ISM

ISM

CUOREO background model

- ▶ 56 sources of background identified and ascribed to parts of the experiment
- Found contamination levels from material screening
- ► All sources simulated with Geant4 through the experiment → build bkg model
- ▶ Bayesian fit to the CUORE-0 spectrum with priors from screening

Excellent agreement of data with model when including 2**νβ**β

CUORE-0 2vββ measure

CUORE-0: $T_{1/2} = [8.2 \pm 0.2 \text{ (stat.)} \pm 0.6 \text{ (syst.)}] \times 10^{20} \text{ y}$

Background estimates for CUORE

In the bkg model we can separe components by type:

- CUORE-0 = CUORE (crystals, Cu holders)
- CUORE-0 ≠ CUORE (cryo shields & Pb shield)

Shields are the largest contribution observed in CUORE-0 (~74%)

Component	Fraction [%]
Shields	74.4 ± 1.3
Holder	21.4 ± 0.7
Crystals	2.64 ± 0.14
Muons	1.51 ± 0.06

CUORE background projection

- CUORE-0 bkg rate is projected to the 988 CUORE bolometers
- We expect a lower Bl in the ROI thanks to:
- better granularity (anticoincidence analysis)
- self-shielding
- new cryostat
- more shielding

PRELIMINARY	
$1.00 \pm 0.03 \text{ (stat.)}^{+0.23}_{-0.10} \text{(syst.)} \times 10^{-2}$	$_{2}$ counts
$[1.00 \pm 0.03 \text{ (stat.)}_{-0.10} \text{ (syst.)}] \times 10$	$kg \cdot keV \cdot y$

c/(keV·kg·yr)	0vββ region
CUORICINO	0.169 ± 0.006
CUORE-0	0.058 ± 0.004
CUORE	0.0100± 0.0003
(projection)	

CUORE background budget in ROI - overall

CUORE cryostat

- ► T~I0 mK stable
- Size $\sim 1 \text{ m}^3$
- ► 6 stages
- ▶ Wired ~2700
- Contains Pb shields
- ► Radiopure material only
- Suspensions to dump vibrations
- ► ~ I5 tons cooled to 4 K

CUORE cryostat

Cryostat top plates Cryostat roman Pb shield (4 K)

10 mK Cu shield

Cryostat commissioning

- Completed March 2016
- ► 6.3 mK stable base temp on ~month scale
- Successfull test of DCS and DAQ
- "Mini-Tower" test: no unaccounted bkg sources

Performed in a radon-free clean room

Installation completed in August 2016

Followed (September – November) by cable routing, electronics and DAQ tests, cryostat closure.

CUORE commissioning

- Cooldown started on Dec. 5 2017
- ► In April 2017 started data taking
- Working on detector optimization

Electronic noise attenuation
Vibration reduction
Base temperature scan
Working point (find I_{bias} of max S/N ratio
for each thermistor)

Detector calibration
Commissioning of analysis software

Detector Calibration System

- In-situ calibration with 12 ²³²Th **γ**-ray sources (239 keV to 2615 keV)
- Sources outside detector during datataking, lowered into the cryostat for calibration runs
- Correct for variations in detector gain

CUORE expected sensitivity

Assuming bkg = 0.01 c/(kg keV y), $\Delta E = 5$ keV FWHM and 5 years running

$$S_{T_{1/2}} \propto \sqrt{\frac{M_{tot} \cdot t}{b \cdot \Delta E}} \qquad S_{m_{etaeta}} \propto \sqrt[4]{rac{b \cdot \Delta E}{M_{tot} \cdot t}}$$

$$T_{1/2} > 9.5 \times 10^{25}$$
y (90% C.L.)

$$m_{\beta\beta} < 50 - 130 \text{ meV}$$

Axial coupling constant $g_A = 1.269$

: Phys. Rev. C 85, 034316 (2012)

NME: Phys. Rev. C 91, 034304 (2015) IBM-2

Phys. Rev. C 87, 045501 (2013) **QRPA**

Phys. Rev. C 91, 024613 (2015) **QRPA** ISM

Nucl. Phys. A 818, 139 (2009)

Phys. Rev. Lett. 105, 252503 (2010) **EDF**

Phys. Rev. C 91, 024309 (2015) ISM

CUPID = Cuore Upgrade with Particle IDentification Please see Enzo Previtali presentation tomorrow

Conclusion

- most stringent limit on ¹³⁰Te half-life
- most precise measurement of $2\nu\beta\beta$ half-life in ¹³⁰Te
- validation of the CUORE assembly technology and background model

- completed installation
- successful cooldown
- NOW TAKING DATA: physics results soon

Institute of Technology

The roman lead

Lead ingots recovered from an ancient Roman ship sunk in ~50 b.c. offshore the west coast of Sardinia.

270 ingots, 33 kg cad = 7 tons
(after removal of the inscriptions)
Reduced content of ²¹⁰Pb due to ancient extraction technique and no cosmic activation.

With our MC background Model we can separe γ from α backgrounds. α is ~24%

In CUORE the γ bkg is expected to drop thanks to the new cryostat so that capability to distinguish bkg due to α becomes crucial.

- 1. Pulse amplitude evaluation
- 2. Gain stabilization
- 3. Energy calibration
- 4. Event selection
- 5. Blinding of E spectrum
- 6. Analysis studies
- 7. Unblinding of E spectrum
- 8. 0*v*66 decay fit

- ► General data quality cuts
- ► Pulse-shape cuts to reject unphysical noise pulses
- ▶ Pileup rejection on each channel: no signals 3.1s before or 4.0s after
- Tower-wide ± 5 ms anticoincidence cut, as 88% of $0\nu\beta\beta$ decays would be single-site events

Only two signatures distinguish events from bkgs:

- I. Energy release
- 2. Single hit $(0\nu\beta\beta)$ signal is confined in a single crystal)
- → Multi-hit events are very likely background

Bayesian exclusion sensitivity

Bayesian analysis on toy MC

- ► Generate 10⁵ bkg spectra based on CUORE bkg
- ► Fit to bkg+0 $\nu\beta\beta$ model → likelihood = P(E|T_{1/2},H^{0v}) (probability of data given the model)
- compute the probability

$$P(T_{1/2}|E, H^{0\nu}) = \frac{P(E|T_{1/2}, H^{0\nu})\pi(T_{1/2})}{\int_0^\infty P(E|T_{1/2}, H^{0\nu})\pi(T_{1/2})dT_{1/2}}$$

- find the $T_{1/2}$ that corresponds to the 90% quantile
- ▶ The median of the distribution of the $T_{1/2}$ values is taken to be the median sensitivity

Exclusion sensitivity > Cuoricino+CUORE0 in ~days

In 5 years:
$$T_{1/2}\sim 9\times 10^{25}~{
m y}~(90\%~{
m C.I.})$$
 (assuming BI = 0.01c/(keV kg y) and Δ E = 5 keV FWHM)

Bayesian discovery sensitivity

Bayesian analysis on toy MC

- ► Generate 10⁵ bkg spectra based on CUORE bkg
- ► Fit to bkg+0 $\nu\beta\beta$ model → likelihood = P(E|T_{1/2},H⁰ ν) (probability of data given the model)
- compute the probability

$$P(T_{1/2}|E, H^{0\nu}) = \frac{P(E|T_{1/2}, H^{0\nu})\pi(T_{1/2})}{\int_0^\infty P(E|T_{1/2}, H^{0\nu})\pi(T_{1/2})dT_{1/2}}$$

- find the $T_{1/2}$ that corresponds to the 90% quantile
- ▶ The median of the distribution of the $T_{1/2}$ values is taken to be the median sensitivity

Exclusion sensitivity > Cuoricino+CUORE0 in ~days

In 5 years:
$$T_{1/2}\sim 3.7\times 10^{25}~{\rm y}~(90\%~{\rm C.L.})$$
 (assuming BI = 0.01c/(keV kg y) and Δ E = 5 keV FWHM)

CUORE background budget in ROI - overall

CUORE background projection

- ► CUORE-0 bkg rate is projected to the 988 CUORE bolometers
- We expect a lower Bl in the ROI thanks to:
 - better granularity (anti-coincidence analysis)
 - self-shielding
 - new cryostat
 - more shielding

counts
$102 + 0.03(\text{ctat}) + 0.23(\text{cyct}) \times 10^{-2}$
$[1.02 \pm 0.03(\text{stat.})^{+0.23}_{-0.10}(\text{syst.})] \times 10^{-2} \frac{\text{counts}}{\text{kg.ikeV} \cdot \text{y}}$
$ \left[1.00 \pm 0.03 \text{ (stat.)}_{-0.10}^{+0.23} \text{(syst.)} \right] \times 10^{-2} \frac{\text{kg. keV} \cdot \text{y}}{\text{kg} \cdot \text{keV} \cdot \text{y}} $

c/(keV·kg·yr)	0vββ region
CUORICINO	0.169 ± 0.006
CUORE-0	0.058 ± 0.004
CUORE (projection)	0.0102± 0.0003