Argonne 🥰

An Overview of Nucleon-Transfer Studies on ⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe

Ben Kay, Physics Division, Argonne National Laboratory *MEDEX 2017*

Overview

- Brief introduction of $0v_2\beta$ decay and the **NME challenge**
- Overview of **experimental approach** to determining occupancies
- Analysis details—how model dependent are the results?
- What does **quenching** mean (the other quenching)?
- **Results** of nucleon transfer reactions
- Some comments

Collaborators

Initiative led by the **Argonne** and **Manchester** groups Experiments at WNSL (Yale), RCNP (Osaka), IPN (Orsay)

J. P. Schiffer, S. J. Freeman, J. A. Clark, C. Deibel, C. R. Fitzpatrick, S. Gros, A. Heinz, D. Hirata, C. L. Jiang, B. P. Kay, A. Parikh, P. D. Parker, K. E. Rehm, A. C. C. Villari, V. Werner, and C. Wrede, T. Adachi, H. Fujita, Y. Fujita, P. Grabmayr, K. Hatanaka, D. Ishikawa, H. Matsubara, Y. Meada, H. Okamura, Y. Sakemi, Y. Shimizu, H. Shimoda, K. Suda, Y. Tameshige, A. Tamii, T. Bloxham, S. A. McAllister, S. J. Freedman, K. Han, A. M. Howard, A. J. Mitchell, D. K. Sharp, J. S. Thomas, J. P. Entwisle, A. Tamii, S. Adachi, N. Aoi, T. Furuno, T. Hashimoto, C. R. Hoffman, E. Ideguchi, T. Ito, C. Iwamoto, T. Kawabata, B. Liu, M. Miura, H. J. Ong, G. Süsoy, T. Suzuki, S. V. Szwec, M. Takaki, M. Tsumura, T. Yamamoto T. E. Cocolios, L. P. Gaffney, V. Guimarães, F. Hammache, P. P. McKee, E. Parr, C. Portail, N. de Séréville, J. F. Smith, I. Stefan.

Schiffer et al., Phys. Rev. Lett. **100**, 112501 (2008) Kay et al., Phys. Rev. C 79, 021301(R) (2009) Kay et al., Phys. Rev. C 87, 011302(R) (2013) Entwisle et al., Phys. Rev. C 93, 064312 (2016) Szwec et al., Phys. Rev. C 94, 054314 (2016)

Single-nucleon transfer reactions on $^{76}Ge \rightarrow ^{76}Se$, $^{130}Te \rightarrow ^{130}Xe$, $^{136}Xe \rightarrow ^{136}Ba$

MEDEX 13 MEDEX 17

Related work

Sean Freeman talked on the nucleon occupancies for the A = 100 and 150 systems and their connection to theoretical calculations.

0v2β decay

REACHING FOR THE HORIZON

(US perspective) The last NSAC Long Range Planning exercise placed an emphasis on ov2β-decay

https://science.energy.gov/np/nsac/

Ov2β decay

REACHING FOR THE HORIZON

(US perspective) The last NSAC Long Range Planning exercise placed an emphasis on ov2β-decay

Ov2 *β* decay

REACHING FOR THE HORIZON

(US perspective)

"Since neutrinoless double beta decay measurements use the atomic nucleus as a laboratory, nuclear theory is critical in connecting experimental results to the underlying lepton-number violating interactions and parameters through nuclear matrix elements, which account for the strong interactions of neutrons and protons. Currently, there exists about a factor of two uncertainty in the relevant matrix elements, but by the time a ton-scale experiment is ready to take data, we expect reduced uncertainties as a result of the application to this problem of improved methods to solve the nuclear many-body physics."

The last NSAC Long Range Planning exercise placed an emphasis on ov2β-decay

Engel and Menéndez, Rep. Prog. Phys. 80, 046301 (2017)

Ov2 *β* decay and NMEs and searches

$$T_{1/2}^{0\nu} \propto a \cdot \epsilon \cdot \sqrt{\frac{M \cdot t}{B \cdot \Delta E}} \propto 1/|\text{NME}|$$

Experimental searches are often discussed in terms of their sensitivity to a given half life, accounting for enrichment, efficiency, backgrounds, resolution, and mass.

Figure taken from one of Jason Detwiler's talks found online

0v2β decay and nuclear structure

- Focus on the initial and final ground states—determine the arrangement of protons and neutron about the Fermi surface
- (Same argument put forward by Sean Freeman in earlier talk)
- Other approaches may include, e.g., ⁷⁶Ge(¹⁸Ne,¹⁸O)⁷⁶Se (see previous talk)

N vs Z, valence space

_	 	_	 _	_
	N			

Single-nucleon transfer (observables)

Transfer reactions a few MeV/u above the Coulomb barrier **Direct reactions**

Kay et al., Phys. Rev. C 79, 021301(R) (2009)

Yield (Cross section) Momentum (Energy)

Single-nucleon transfer (derived quantities)

Transfer reactions a few MeV/u above the Coulomb barrier Direct reactions

Entwisle et al., Phys. Rev. C 93, 064312 (2016)

A parameterized model

- >50 years experience / refinement
- Parameterized (Wood-Saxon potentials, derivatives)
- Lots of logical check points (e.g., parameters are consistent with those derived from electron scattering ... radii, etc.), a wealth of nucleon scattering data
- corrections to account for kinematics and spins

• The spectroscopic factor is a 'reduced cross section' – modest

Does it work? How to relate to occupancies?

- Need a **normalization**
- Typical uncertainty is between +/-0.1-0.2 nucleons
- Demonstrated in many systems (groups of isotopes/isotones) across the chart of isotopes

$$S' \equiv \sigma_{\rm exp} / \sigma_{\rm DWBA}$$

$$N_j \equiv S'/S$$

$$N_{j} \equiv (\Sigma G_{+} S'_{\text{adding}} + \Sigma G_{-} S'_{\text{removing}}) / (2j)$$

• But is the normalization just arbitrary?

J. P. Schiffer et al., Phys. Rev. Lett. **108**, 022501 (2012) [work prompted largely because of the 0v2β-decay program]

+ 1).

Stripping Reactions and the Structure of Light and Intermediate Nuclei*

M. H. MACFARLANE

Argonne National Laboratory, Lemont, Illinois, and University of Rochester, Rochester, New York[†]

AND

J. B. FRENCH University of Rochester, Rochester, New York

$^{76}Ge \rightarrow ^{76}Se \ valence \ space$

Analysis—sum rules and normalization

...in which cross sections becomes occupancies

⁷⁶Ge(*p*,*d*)

E	l	S'
0	1	0.45
191	4	
248	1	0.12
317	3	
457	3	
575	1	1.29
651	3	
885	1	0.10
1137	1	0.11
1250	3	
1410	0	
1451	1	0.37
1580	3	

$$N_j \equiv \left[\sum S'_{\text{removing}} + \right]$$

 $N_j \equiv \left[(0.45 + 0.12 + 1.29 + 0.10 + 0.11 + 0.37) + (0.44 + 0.15 + 0.12 + 0.04) \right] / (2 + 4) = 0.53$

⁷⁶Ge(*d*,*p*)

Ε	ł	(2 <i>j</i> +1)S'
160	1	0.44
225	4	
421	2	
505	2	
629	1	0.15
884	2	
1021	1	0.12
1048	1	0.04
1250	0	
1385	2	

 $\sum (2j+1)S'_{\rm adding}]/(2j+1)$

Analysis—sum rules and normalization

...in which cross sections becomes occupancies

 $^{76}Ge(p,d)$

E	ł	S'	S	_	E	l	(2 <i>j</i> +1)S'	(2 <i>j</i> +1)S
0	1	0.45	0.85		160	1	0 11	0.82
191	4				100		0.77	0.02
248	1	0.12	0.23		225	4		
317	3			•	421	2		
457	3				505	2		
575	1	1.29	2.43		620	1	0 15	0.28
651	3				029		0.15	0.20
885	1	0.10	0.19		884	2		
1137	1	0.11	0.21		1021	1	0.12	0.22
1250	3				1048	1	0.04	0.07
1410	0				1050	0		
1451	1	0.37	0.70		1250	0		
1580	3				1385	2		

$$N_j \equiv \left[\sum S'_{\text{removing}} + \right]$$

 $^{76}{\rm Ge}(d,p)$

 $(2j+1)S'_{\text{adding}}]/(2j+1)$

 $N_j \equiv \left[(0.45 + 0.12 + 1.29 + 0.10 + 0.11 + 0.37) + (0.44 + 0.15 + 0.12 + 0.04) \right] / (2 + 4) = 0.53$

The normalization appears meaningful, a ubiquitous feature of low-lying singleparticle strength, independent of A, *l*, nucleon type, reaction

Reaction, ℓ transfer	Number of determinations	${F}_q$	rms spread
$(e,e'p)$, all ℓ	16	0.55	0.07
$(d,p), (p,d), \ell = 0-2$	40	0.53	0.09
$(d,p), (p,d), \ell = 0-3$	46	0.53	0.10
$(\alpha, {}^{3}\text{He}), ({}^{3}\text{He}, \alpha), \ell = 4-7$	26	0.50	0.09
$(\alpha, {}^{3}\text{He}), ({}^{3}\text{He}, \alpha), \ell = 3-7$	34	0.52	0.09
$({}^{3}\text{He},d), \ \ell = 0-2$	18	0.54	0.10
$({}^{3}\text{He},d), \ \ell = 0-4$	26	0.54	0.09
$(\alpha, t), \ \ell = 4-5$	14	0.64	0.04
$(\alpha, t), \ \ell = 3-5$	18	0.64	0.04
All transfer data ^a	124	0.55	0.10
^a Rows 3, 5, 7, and 9.			

Kay et al., Phys. Rev. Lett. **111**, 042502 (2013)

Argonne

"Thus at any time only 2/3 of the nucleons in the nucleus act as independent particles moving in the nuclear mean field. The remaining third of the nucleons are correlated."*

Key points:

- Academic in terms of change in occupancies
- Arguably essential in terms of trusting the data
- How does theory handle it?

*V. R. Pandharipande, I. Sick, P. K. A. deWitt Huberts, Rev. Mod. Phys. 69, 981 (1997) W. H. Dickhoff J. Phys. G: Nucl. Part. Phys. 37, 064007 (2010)

There are a handful of isotopes where reliable experimentally determined cross sections exist from numerous 'equivalent' probes, e.g., proton removal from ¹²C. **Same physics results**

Evaluated Nuclear Structure Data File (<u>www.nndc.bnl.gov</u>)

- Tempting to conclude it is well understood
- Not captured in, e.g., shell model (SM does not know of SRC)

Lapikás, Wesseling, and Wiringa, Phys. Rev. Lett. 82, 4404 (1999)

• Ab initio calculations do capture it beautifully (in light nuclei)

Model	$S \\ 0^+$	$S 2^+$	$S = 0^+ + 2^+$
Expt. $(1p)$	0.42(4)	0.16(2)	0.58(5)
VMC $(1p)$	0.41	0.18	0.59
VMC $(1p + 1f)$	0.41	0.19	0.60

Quenching Factor (a few other comments)

energy (at least near stability)

- Note, there are very good (*e,e'p*) and (*e,e'n*) data on 48 Ca
- Arguably not necessary to explore (*e,e'p*) [no obvious facilities] ... results agree with nucleon transfer

O. Hen et al. Science **346**, 614 (2014)

• No obvious change with neutron excess (*np* dominates) or binding

Does it relate to quenching of g_A? Not obvious, but likely in the sense that there is missing physics / model space in calculations

Occupancies for ⁷⁶Ge, ⁷⁶Se

Already well known by MEDEX13 ...

Isotope	0f 5/2	1p 1/2,3/2	0g 9/2	Sum	E>
⁷⁴ Ge	1.8	1.1	4.3	7.2	
⁷⁶ Ge	1.4	1.1	3.5	6.0	
⁷⁶ Se	2.2	1.6	4.2	8.0	
⁷⁸ Se	2.3	0.9	2.8	6.1	
Isotope	0f 5/2	1p 1/2,3/2	0g 9/2	Sum	E>
⁷⁴ Ge	1.89	1.52	0.37	3.78	
⁷⁶ Ge	1.75	2.04	0.23	4.02	
⁷⁶ Se	2.09	3.17	0.86	6.12	
⁷⁸ Se	2.35	1.82	2.05	6.22	

J. P. Schiffer et al., Phys. Rev. Lett. **100**, 112501 (2008) [neutrons] B. P. Kay et al., Phys. Rev. C 79, 021301(R) (2009) [protons]

Change in Occupancies for ⁷⁶Ge, ⁷⁶Se

Already well known by MEDEX13 ... new IBM calculations not shown

J. P. Schiffer et al., Phys. Rev. Lett. **100**, 112501 (2008) [neutrons] B. P. Kay et al., Phys. Rev. C 79, 021301(R) (2009) [protons] Rodin et al., Nucl. Phys. A **766**, 107 (2006) [A] Suhonen et al., Phys. Lett. B 668, 277 (2006) [B] Caurier et al., Phys. Rev. Lett. **100**, 052503 (2008) [C]

Errors bars from experimental data

Change in Occupancies for ⁷⁶Ge, ⁷⁶Se

Already well known by MEDEX13 ... new IBM calculations not shown

J. P. Schiffer et al., Phys. Rev. Lett. **100**, 112501 (2008) [neutrons] B. P. Kay et al., Phys. Rev. C 79, 021301(R) (2009) [protons] Rodin et al., Nucl. Phys. A **766**, 107 (2006) [A] Suhonen et al., Phys. Lett. B 668, 277 (2006) [B] Caurier et al., Phys. Rev. Lett. **100**, 052503 (2008) [C]

Te-130 → *Xe-130*

Have to overcome the obstacles of having a gaseous target:

- Neutron transfer using a 'frozen' Xe target 'S Yale's WSNL
- Proton transfer using a Xe gas target * RCNP Osaka

en' Xe target 🖘 Yale's WSNL s target 🖘 RCNP Osaka

Proton Occupancies above Z = 50

Recent results

Isotope	$0g_{7/2}$	1d	$2s_{1/2}$	$0h_{11/2}$	Total	Expecte	
¹²⁸ Te	1.13(9)	0.33(3)	0.012(10)	0.41(4)	1.87(10)	2	
¹³⁰ Te	1.32(10)	0.32(3)	0.011(10)	0.24(3)	1.89(11)	2	
¹³⁰ Xe	2.37(20)	1.00(11)	0.21(2)	0.37(3)	3.95(24)	4	
132 Xe	2.60(10)	0.94(5)	0.13(2)	0.41(4)	4.07(12)	4	
134 Xe	3.14(10)	0.71(4)	0.022(10)	0.37(4)	4.24(12)	4	
¹³⁶ Xe	2.93(10)	0.52(3)	0.057(6)	0.40(4)	3.91(11)	4	
¹³⁶ Ba	3.86(10)	1.29(8)	0.20(2)	0.62(6)	5.97(14)	6	
¹³⁸ Ba	4.38(10)	1.15(8)	0.050(16)	0.59(7)	6.17(15)	6	
130 Xe $-^{130}$ Te	1.05(23)	0.68(12)	0.20(2)	0.13(4)	2.06(26)	2	
136 Ba $- ^{136}$ Xe	0.93(14)	0.77(9)	0.14(2)	0.22(7)	2.06(18)	2	

Extracted occupancies by demanding the sums of the $Og_{7/2}$, 1d, $2s_{1/2}$, and $Oh_{11/2}$ strength equal 2, 4, and 6 for Te, Xe, and Ba, respectively. Numbers here represented a common normalization [=0.60(3)] applied to all.

J. P. Entwisle et al., Phys. Rev. C 93, 064312 (2016)

seem familiar?

Proton Occupancies above Z = 50

J. P. Entwisle et al., Phys. Rev. C 93, 064312 (2016)

Change in Occupancies for ¹³⁰Te, ¹³⁰Xe

 $130 \mathrm{Te}$ **RCNP** data Protons: ¹³⁰Xe SM2 EXP SM1 130 Xe Neutrons: ¹³⁰Te Yale data (from previous exp.) SM2 EXP **SM**1

J. P. Entwisle et al., Phys. Rev. C 93, 064312 (2016) [protons]
B. P. Kay et al., Phys. Rev. C 87, 011302(R) (2013) [neutrons]
A. Neacsu and M. Horoi, Phys. Rev. C 91, 024309 (2015) [SM1]
J. Menéndez et al., Nucl. Phys. A 818, 139 (2009) [SM2]
J. Kotila and J. Barea, Phys. Rev. C 94, 034320 (2016) [IBM]
J. Suhonen and O. Civitarese, Nucl. Phys. A 847, 207 (2010) [QRPA]

$Xe-136 \rightarrow Ba-136$

Have to overcome the obstacles of having a gaseous target (or use a trick):

- Neutron transfer, no Xe involved So IPN Orsay
- Proton transfer using a Xe gas target 🖘 RCNP Osaka

1							
	-					-	-
	_	_	_		_	_	_
							_

Change in Occupancies for ¹³⁶Xe, ¹³⁶Ba

J. P. Entwisle et al., Phys. Rev. C 93, 064312 (2016) [protons] S. V. Szwec et al., Phys. Rev. C 94, 054314 (2016) [neutrons] A. Neacsu and M. Horoi, Phys. Rev. C 91, 024309 (2015) [SM1] J. Menéndez et al., Nucl. Phys. A **818**, 139 (2009) [SM2] J. Kotila and J. Barea, Phys. Rev. C 94, 034320 (2016) [IBM]

Experiment and theory (in conclusion) There are numerous substantial disagreements, some concerns (while the NME might be relatively insensitive to the the occupancies, should be correct?)

Impact on NMEs

Yes, some. Though much discussed, a **40-70% reduction** in the well-known gap between QRPA and the ISM, resulted. This predated recent IBM work and newer calculations.

Šimkovic et al., Phys. Rev. C 79, 055501 (2009) [last sentence of that paper]

Summary

- Single-nucleon spectroscopic factors offer a robust description of nuclear structure in terms of occupancies
- 'Close' to the observable (cross section \rightarrow reduced cross section)
- The model dependencies are small compared to many other problems
- Other probes key (pairing, etc., not covered here)
- Promising things on the horizon (*ab initio* with e.g., ⁸He worked on) ⁴⁸Ca within reach? and so on (is ⁴⁸Ca the best 'playground'?)

Schiffer et al., Phys. Rev. Lett. **100**, 112501 (2008) Kay et al., Phys. Rev. C 79, 021301(R) (2009) Kay et al., Phys. Rev. C 87, 011302(R) (2013) Entwisle et al., Phys. Rev. C 93, 064312 (2016) Szwec et al., Phys. Rev. C 94, 054314 (2016)

Eo lifetimes, Ge and Se (approved exp. at TRIUMF) Revisiting two-proton transfer [Xe(3He,n) at ANL] Other programs (e.g. RCNPs CE reactions, Catania)

