The Status and Initial Results of the Majorana Demonstrator Experiment

V.E Guiseppe
University of South Carolina
for the Majorana Collaboration

MEDEX'17 Meeting — Prague, May 29 - June 2, 2017
The MAJORANA Collaboration

Black Hills State University, Spearfish, SD
Kara Keeter

Duke University, Durham, North Carolina, and TUNL
Matthew Busch

Joint Institute for Nuclear Research, Dubna, Russia
Viktor Budanin, M. Shirchenko, Sergey Vasilyev, E. Yakushev, I. Zhitnikov

Lawrence Berkeley National Laboratory, Berkeley, California and the University of California - Berkeley
Nicolas Abgrall, Yuen-Dat Chan, Lukas Hehn, Jordan Myslik, Alan Poon, Kai Vetter

Los Alamos National Laboratory, Los Alamos, New Mexico
Pinghan Chu, Steven Elliott, Ralph Massarczyk, Keith Rielage, Larry Rodriguez, Harry Salazar, Brandon White, Brian Zhu

National Research Center ‘Kurchatov Institute’ Institute of Theoretical and Experimental Physics, Moscow, Russia
Alexander Barabash, Sergey Konovalov, Vladimir Yumatov

North Carolina State University, and TUNL
Matthew P. Green

Oak Ridge National Laboratory
Fred Bertrand, Charlie Havener, Monty Middlebrook, David Radford, Robert Varner, Chang-Hong Yu

Osaka University, Osaka, Japan
Hiroyasu Ejiri

Pacific Northwest National Laboratory, Richland, Washington
Isaac Arnquist, Eric Hoppe, Richard T. Kouzes

Princeton University, Princeton, New Jersey
Graham K. Giovanetti

Queen’s University, Kingston, Canada
Ryan Martin

South Dakota School of Mines and Technology, Rapid City, South Dakota
Colter Dunagan, Cabot-Ann Christofferson, Anne-Marie Suriano, Jared Thompson

Tennessee Tech University, Cookeville, Tennessee
Mary Kidd

Technische Universität München, and Max Planck Institute, Munich, Germany
Tobias Bode, Susanne Mertens

University of North Carolina, Chapel Hill, North Carolina, and TUNL
Thomas Caldwell, Thomas Gilliss, Chris Haufe, Reyco Henning, Mark Howe, Samuel J. Meijer, Christopher O’Shaughnessy, Gulden Othman, Jamin Rager, Anna Reine, Benjamin Shanks, Kris Vorren, John F. Wilkerson

University of South Carolina, Columbia, South Carolina
Frank Avignone, Vince Guiseppe, David Tedeschi, Clint Wiseman

University of South Dakota, Vermillion, South Dakota
CJ Barton, Wengxin Xu

University of Tennessee, Knoxville, Tennessee
Yuri Efremenko, Andrew Lopez

University of Washington, Seattle, Washington
Sebastian Alvis, Tom Burnett, Micah Buick, Clara Cuesta, Jason Detwiler, Julieta Gruszko, Ian Guinn, David Peterson, Walter Pettus, R. G. Hamish Robertson, Nick Roff, Tim Van Wechel
The MAJORANA DEMONSTRATOR

Funded by DOE Office of Nuclear Physics, NSF Particle Astrophysics, NSF Nuclear Physics with additional contributions from international collaborators.

Goals:
- Demonstrate backgrounds low enough to justify building a tonne scale experiment.
- Establish feasibility to construct & field modular arrays of Ge detectors.
- Searches for additional physics beyond the standard model.

Located underground at 4850’ Sanford Underground Research Facility

Background Goal in the $0\nu\beta\beta$ peak region of interest (4 keV at 2039 keV)
- 3 counts/ROI/t/y (after analysis cuts) Assay U.L. currently ≤ 3.5
- scales to 1 count/ROI/t/y for a tonne experiment

44.1-kg of Ge detectors
- 29.7 kg of 88% enriched ^{76}Ge crystals
- 14.4 kg of ^{nat}Ge
- Detector Technology: P-type, point-contact.

2 independent cryostats
- ultra-clean, electroformed Cu
- 22 kg of detectors per cryostat
- naturally scalable

Compact Shield
- low-background passive Cu and Pb
 shield with active muon veto

MAJORANA DEMONSTRATOR Implementation

Module 1:
- 16.9 kg (20) $^{\text{enr}}$Ge
- 5.6 kg (9) $^{\text{nat}}$Ge
May – Oct. 2015,
Final Installation,
Dec. 2015 — ongoing

Module 2:
- 12.9 kg (15) $^{\text{enr}}$Ge
- 8.8 kg (14) $^{\text{nat}}$Ge
July 2016 — ongoing
MAJORANA Data Sets

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-2</td>
<td>May 24 - July 14, 2016</td>
</tr>
<tr>
<td>DS-3</td>
<td>Aug. 25 - Sep. 27, 2016</td>
</tr>
<tr>
<td>DS-5</td>
<td>May 11, 2017*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DS-0</th>
<th>DS-1</th>
<th>DS-2</th>
<th>DS-3</th>
<th>DS-4</th>
<th>DS-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (days)</td>
<td>103.15</td>
<td>144.50</td>
<td>50.97</td>
<td>32.37</td>
<td>32.36</td>
</tr>
<tr>
<td>Total acquired</td>
<td>87.93</td>
<td>136.98</td>
<td>50.47</td>
<td>31.73</td>
<td>25.80</td>
</tr>
<tr>
<td>Physics</td>
<td>47.70</td>
<td>61.34 + 20.41*</td>
<td>9.82 + 30.56*</td>
<td>29.97</td>
<td>23.84</td>
</tr>
<tr>
<td>High radon</td>
<td>11.76</td>
<td>7.32</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Calibration</td>
<td>15.44</td>
<td>7.32</td>
<td>0.65</td>
<td>1.18</td>
<td>1.17</td>
</tr>
<tr>
<td>Down time</td>
<td>15.21</td>
<td>7.51</td>
<td>0.50</td>
<td>0.64</td>
<td>6.56</td>
</tr>
<tr>
<td>Disruptive/Commissioning</td>
<td>13.10</td>
<td>34.43 + 5.92*</td>
<td>2.41 + 7.03*</td>
<td>0.57</td>
<td>0.78</td>
</tr>
</tbody>
</table>

*Blind data

*Values up to Jan. 19, 2017

DS6 has started with multisampling and blindness
Background based on assay of materials.
Where an upper limit exists, use upper limit as contribution

MAJORANA Approach to Backgrounds

The detector: P-type point contact
- enrGe metal zone refined and pulled into a crystal that provides purification
- Limit above-ground exposure to prevent cosmic activation
- Slow drift velocity and localized weighting potential: separation of multi-site events

Rejection of backgrounds
- Granularity: multiple detectors hit
- Pulse shape discrimination: multiple hits in a detector
- Alpha events near surface: based on response

Single-site event

Multiple scatters
Majorana Approach to Backgrounds

Ultra-pure materials
- Low mass design
- Custom cable connectors and front-end boards
- Carefully selected plastics & fine Cu coax cables
- **Underground Electro-formed Cu**
 10 baths at SURF, 6 baths at PNNL
 2474 kg of electroformed copper produced.
 Th decay chain (ave) \(\leq 0.1 \mu\text{Bq/kg} \)
 U decay chain (ave) \(\leq 0.1 \mu\text{Bq/kg} \)

Machining and Cleaning
- Cu machining in an underground clean room
- Cleaning of Cu parts by acid etching and passivation
- Nitric leaching of plastic parts
Detector Units and Strings

Detector parts stored and assembled inside radon-reduced, dry N\textsubscript{2} environment storage and glove boxes.

All parts are uniquely tracked through machining, cleaning, and assembly by a custom-built database.
Assembled Detector Unit and String

AMETEK (ORTEC) fabricated enriched-Ge PPC detectors
- 35 enriched detectors: 29.7 kg, 88% ^{76}Ge.
Canberra fabricated natural-Ge BEGe detectors

Electroformed Copper
PTFE insulator
PFA + fine Cu coaxial cable
Front-End Elec.
Detector Readout Components

- Fine Cu coaxial cable and clean connectors
- Shipping Restraint
- Epoxy
- Feedback Resistor
- FET
- Connectors reside on top of cold plate.
- In-house machined from Vespel.
- Axon’ pico co-ax cable.
- Low background solder and flux.

Custom low mass front-end boards:
- Clean Au+Ti traces on fused silica
- Amorphous Ge resistor
- FET mounted with silver epoxy
- EFCu + low-BG Sn contact pin
Detector Module

- A self contained vacuum and cryogenic vessel
- Contains a portion of the shielding
- Can be transported for assembly and deployment

Module mated to the glovebox for string installation

Module moving to/from transporter
Detector Module

Loading of enrGe in Cryostat 1

Loading of enrGe in Cryostat 2
Passive Shielding and Muon Veto

Pb and outer Cu shield

Module deployment

Muon panels

Radon Enclosure

Muon Veto Panels

Poly Shield

Pb Bricks

Inner Cu Shield

Outer Cu Shield
Pulse Shape Analysis

Use a pulse shape analysis (PSA) rejection of multi-site gamma events

Benefit of P-type Point-Contact (PPC) detectors for background rejection:
- Slow drift time of the ionization charge cloud
- Localized weighting potential gives excellent multi-site rejection

228Th calibration data provides data to tune multi-site event rejection

208Tl DEP (single site events) fixed to 90%

208Tl SEP (multiple site events) reduced to 6%
Calibration

Calibration of the detector array with a 228Th line source
- Source is inserted and retracted for scheduled calibrations

Calibration system: arXiv:1702.02466

228Th Sum Calibration Spectrum
(DS-3, enriched & natural)

208Tl peak
~2.8 keV FWHM at 2615 keV

68Ge x-ray
~0.3 keV FWHM at 10.3 keV
(natural only)
Delayed Charge Recovery and Alphas

Alpha background response observed in Module 1 commissioning (DS0)
- Identified as arising from alpha particles impinging on passivated surface
- Results in prompt collection of some energy, plus very slow collection of remainder
- Produces a distinctive waveform allowing a high efficiency cut
 - “Delayed Charge Recovery” (DCR) parameter related to slope of tail

Example pole-zero corrected waveforms

Slow drift of charges along passivated surface results in very slow signal component
Background Spectrum (DS3 & DS4)

Lowest background configuration with both modules in shield.

Enriched detectors in Modules 1 & 2, before and after PSD cuts

Spectrum is dominated by $2\nu\beta\beta$
After cuts, 1 count in 400 keV window centered at 2039 keV (0νββ peak)

- Projected background rate is $5.1^{+8.9}_{-3.2}$ c/(ROI t y)
 using a 2.9 (M1 - DS3) & 2.6 keV (M2 - DS4) keV ROI (68% CL).
- Background index of 1.8×10^{-3} c/(keV kg y)

Analysis cuts are still being optimized.

10x more exposure when we include DS5.
New results to be released later this summer.
Low Energy Spectrum in DS0

Controlled surface exposure of enriched material to minimize cosmogenics
Significant reduction of cosmogenics in the low-energy region.
- Low-energy rate is improved in subsequent data sets

Enriched Detectors: \(\sim 0.04 \text{ cts}/(\text{kg-keV-d}) \) near 20 keV
Efficiency below 5 keV is under study.

Permits Low-Energy physics
Pseudoscalar dark matter
Vector dark matter
14.4-keV solar axion
\(e^- \Rightarrow 3\nu \)
Pauli Exclusion Principle
Low Energy Spectrum in DS0

Controlled surface exposure of enriched material to minimize cosmogenics
Significant reduction of cosmogenics in the low-energy region.
 - Low-energy rate is improved in subsequent data sets
Enriched Detectors: ~0.04 cts/(kg-keV-d) near 20 keV
Efficiency below 5 keV is under study.

Permits Low-Energy physics
Pseudoscalar dark matter
Vector dark matter
14.4-keV solar axion
\(e^- \Rightarrow 3\nu \)
Pauli Exclusion Principle

Low Energy Spectrum in DS0 & DS1

Controlled surface exposure of enriched material to minimize cosmogenics

Significant reduction of cosmogenics in the low-energy region.

- Low-energy rate is improved in subsequent data sets
The ^{76}Ge enriched point contact detectors developed by MAJORANA
- have attained the best energy resolution (2.4 keV FWHM at 2039 keV) of any $\beta\beta$-decay experiment.
- provide excellent pulse shape discrimination reduction of backgrounds.
- at low energies have sub-keV energy thresholds and excellent resolution allowing the DEMONSTRATOR to perform sensitive test in this region for physics beyond the standard model.

The DEMONSTRATOR’s initial backgrounds are amongst the lowest backgrounds in the ROI achieved to date (approaching to GERDA’s recent best value). Attained by development and selection of ultra-low activity materials and low mass designs.

Combining the strengths of GERDA and the MAJORANA DEMONSTRATOR, the LEGEND Collaboration is moving forward with a ton-scale ^{76}Ge based experiment. Based on the successes to date, LEGEND should be able to reach the backgrounds $\sim 0.1 \text{ c/(ROI ty)}$ and energy resolution necessary for discovery level sensitivities in the inverted ordering region.
Backup Slides
MAJORANA Underground Laboratory
Natural Detectors
- CANBERRA modified BEGe
- ~ 70 mm x 30 mm
- ~ 650 g each
- Made in Meriden, CT, USA; different from the Olen-type used in GERDA

Enriched Detectors
- ORTEC PPC
- ~ 70 mm x 50 mm
- ~ 900 g each
- All production (zone refinement, crystal pull and diode production) in Oak Ridge, TN, USA
- Production began in Nov. 2012
Delivered enrGe Detectors

Vendor: AMETEK/ORTEC
Enriched detector production completed in June 2015
Total enriched detector mass = 29.683 kg / 35 detectors
Mean FWHM at 1333 keV = 1.88 keV
Underground Cu electro-forming laboratory produces all of the ultra-pure inner Cu
Cu Production and Machining

Cu machining in an underground clean room machine shop complete April 2016

All parts are uniquely tracked through machining, cleaning, and assembly by a custom-built database.
Cleaning of Cu parts by acid etching and passivation
The MAJORANA Calibration system

- Line sources are deployed from outside the shielding within a tube that surrounds each cryostat.
- ^{228}Th (11.6 kBq) and ^{60}Co (6.3kBq) sources available.
- Calibration tube is externally purged during calibration.
- Several sensors monitor the position of the source and the status of the system.
One enriched detector spectrum within a string mounted in Module 1 and inside shield. FWHM 3.6 keV at 2.6 MeV
Sensitivity vs. Exposure 76Ge

76Ge (87% enr.)

100 kg-year exposure
3.5 counts/ROI-t-y
$T_{1/2} = 1.2 \times 10^{26}$ y

Assumes 75% efficiency based on GERDA Phase I. Enrichment level is accounted for in the exposure.
3σ Discovery vs. Exposure for 76Ge

76Ge (87% enr.)

Inverted Ordering (IO)

- Minimum IO $m_{B\beta} = 18.3$ meV, taken from using the PDG2013 central values of the oscillation parameters, and the most pessimistic NME for the corresponding isotope among QRPA, SM, IBM, PHFB, and EDF

Note: Region of Interest (ROI) can be single or multidimensional (E, spatial, ...)

Assumes 75% efficiency based on GERDA Phase I. Enrichment level is accounted for in the exposure.
DS0 + DS1: 0ν Sensitivity

- No ROI events in either data set.
- T1/2 > 3.7x10^24 y (90% CL).
- DS0 & DS1 total exposure: 3.03 kg y.
 - DS0 1.37 kg-y, DS1 1.66 kg y
- Efficiency for 0νββ is 0.61±0.04.
 - 0.61 = (0.84)(0.9)(0.9)(0.9)
 = (Resol.)(Full Energy)(A/E)(DCR)
- Background very low. Sensitivity almost linear with exposure.
- We are exploring additional techniques for reducing background.
 - Fast rise-time cut.
- This analysis is on open data.
- Blind data taking began on April 14.
- We are studying the possibility of repairing cables/connectors. Could increase mass by 50%
Module 1 Improvements – Fall 2015

Operated in-shield June 2015 - Oct. 2015
- Partial shielding and some high-background components

- Installed inner Cu shield: Decrease background contribution from outer Cu shield and Pb by factor of about 10.
- Replaced Kalrez O-rings in cryostat: These o-rings contributed to our background. Replaced with PTFE.
 Kalrez: Th ~ 2000-4000 ppt. Expect about 80 c/ROI t y.
 PTFE sheet: significant reduction in BG compared to Kalrez.

Crossarm Shielding: Added to decrease background contributions from electronics-breakout box region.

Repaired non-operating detectors and upgrade cables:
- Repairing non-operating detectors (cable connection, HV connection, LMEF replacement, …)
DS1 DCR Cut and Bulk-Event Response

Removes most events above 2 MeV in the background spectrum, which are α candidates. Cut is 90% efficient for retaining events within detector bulk. Only ~5% of α’s survive cut.

During calibration runs, γ events survive cut.

During Background runs, ββ(2ν) events survive cut.

Candidate α events from background runs are removed.
DS1 Spectrum with DCR Cut

We perform some data cleaning cuts, granularity and PSD cuts to remove multiple site energy deposits, and the DCR cut to remove surface alphas.

- DCR cut events stop at about 5.3 MeV. Circumstantial evidence that its Po.