Solar neutrino backgrounds for double beta decay

 $\beta\beta$ Background Requirement Solar νs as a $\beta\beta$ Background Calculation Description Discussion of Specific Cases

In collaboration with Hiro Ejiri PRC 89, 055501 (2014) PRC 95, 055501 (2017)

Signal Rates Background is the key R&D challenge for ββ

Half life (years)	~Signal (cnts/ton-year)	~Neutrino mass scale (meV)	
10 ²⁵	530	400	Degenerate
5x10 ²⁶	10	100	
5x10 ²⁷	To reach IO scale need BG on order 1/t-y or better.	40	Inverted Ordering
>10 ²⁹	<0.05	<10	Normal Ordering

Discovery, Background and Exposure

Need Unprecedented Background Level

- For pessimistic values of the matrix elements, a background near 0.1 count/ (ROI t y) is required.
- For optimistic values, background approaching 1 count/(ROI t y) is OK.
- For both, plan for about 10 t-y exposure to reach 15 meV target.

Minor Background Component

- If we need a background < 0.1 counts/ ROI t y, then any single component needs be less than 0.01 counts/ROI t y.
- Charge-current interactions with solar neutrinos will contribute at these levels.
- CC populates the intermediate nucleus. When it decays, the decay energy is greater than the $\beta\beta$ Q Value.

Solar Neutrino Backgrounds

The β , and γ sum spectra are continuous and can produce background in proportion to the resolution.

Potential for rejection due to initial CC event or the topology of the summed radiations.

Recent BGT Measurements

Ge: PRC 86, 014304 (2012)

Se: PRC 94, 014614 (2016)

Mo: PRC86, 044309 (2012)

Te: PRC 86, 044603 (2012)

Xe: PRC 84, 051305(R) (2011)

Nd: PRC 83, 064318 (2011)

Cross Section and Rate Calculations

$$\sigma_k = \frac{G_F^2 \cos^2 \theta_c}{\pi} p_e E_e F(Z, E_e) \left[B(F)_k + \left(\frac{g_A}{g_V} \right)^2 B(GT)_k \right]$$

$$= (1.597 \times 10^{-44} \text{ cm}^2) p_e E_e F(Z, E_e)$$

$$\times \left[B(F)_k + \left(\frac{g_A}{g_V} \right)^2 B(GT)_k \right],$$

$$R = \sum_{k} \int \sigma_{k} \frac{d\phi_{\nu}}{dE_{\nu}} dE_{\nu}$$

About 10% accuracy Use BP05(OP) fluxes with oscillation.

Astrophys. J. Lett 621,L85 (2005)

Fermi function from tables

Behrens & Jänecke

MEDEX 2017

Steve Elliott

Solar v and $\beta\beta$ Isotopes

Group A: low Q and hence significant pp response.

Group B: high Q and low solar response.

Solar Neutrino Rates

Isotope	$\beta\beta(2\nu) \ au_{1/2}$ years	Q_{etaeta} MeV	$Q_{ u}$ MeV	Q_{eta} MeV	S_{pp} (SNU)	S _B (SNU)	S_t no osc. (SNU)	S_t (SNU)
⁸² Se	$9.2 \times 10^{19} [17]$	2.992	-0.172	3.093	257	10.0	672	368
¹⁰⁰ Mo	$7.1 \times 10^{18} [17]$	3.034	-0.168	3.202	391	6.0	975	539
¹⁵⁰ Nd	$8.2 \times 10^{18} [17]$	3.368	-0.197	3.454	352	15.5	961	524
⁷⁶ Ge	$1.93 \times 10^{21} [18]$	2.039	-1.010	2.962	0	5.0	15.7	6.3
¹³⁰ Te	$6.9 \times 10^{20} [17]$	2.528	-0.463	2.949	0	6.1	67.7	33.7
¹³⁶ Xe	$2.19 \times 10^{21} [17]$	2.468	-0.671	2.548	0	9.8	136	68.8

Some of these isotopes might make good solar neutrino detectors.

Beta decay effects and calculations

$$\frac{dN}{dE} \sim (E_0 - E_e)^2 E_e p_e F(Z, E_e),$$

- We consider most of the β strength.
 - ~95% or more of the total branching ratio.
- Calculate the β spectrum and its sum with any γ s.
- Estimate the fraction of the spectrum that falls at the ROI for a given resolution. We did this as a function of resolution.

Ge-76

6 SNU

3 primary decays (93.7%) to various states.

 β plus γ sum.

Results in a large overlap with ROI.

For 2% resol.: 0.03 counts/t y

 76 As has 1 d $\tau_{1/2}$ No CC tag. Ground state trans. About half MSE decay HPGE good resol. Very low rate.

Se-82

 82 Br has 35 h $\tau_{1/2}$ No CC tag. Excited state trans. Permits MSE cut Very high rate.

370 SNU 98.5% decay to a lone state. Low energy β plus a γ . Results in a large overlap with ROI. For 2% resol.: 4.4 counts/t y

Mo-100

 100 Tc has 16 s $\tau_{1/2}$ CC tag possible Ground state trans. Makes MSE hard Very high rate.

540 SNU
93% decay to ground state.
Results in a small overlap with ROI.
For 2% resol.: 0.1 counts/t y

Te-130

 130 I has 12 h $\tau_{1/2}$ No CC tag Excited state trans. Good MSE rejection Bolometer good resol. Low rate.

34 SNU 94.7% decay to two states. Low energy β plus a γ . Results in a very large overlap with ROI. For 2% resol: 0.5 counts/t y

Xe-136

 136 Xe has 13 d $\tau_{1/2}$ No CC tag. Excited state trans. Good MSE rejection Modest rate.

69 SNU

98.5% decay to various states.

70.3% to a lone state

Low energy β plus γ .

Results in a large overlap with ROI.

For 2% resol.: 0.6 counts/ t y

MEDEX 2017

Steve Elliott

Nd-150

524 SNU

Numerous states with significant BR.

Low energy β plus a γ .

Results in a small overlap with ROI.

For 2% resol.: 0.1 counts/t y

¹⁵⁰Pm has 3 h $\tau_{1/2}$ No CC tag. Ground & Excited state trans., Good MSE rej. Very High rate.

Relative Rates- Energy Selection Only

2% resol.

Isotope	$\beta\beta(2\nu) \ au_{1/2}$ years	Q_{etaeta} MeV	$Q_ u$ MeV	Q_{eta} MeV	B_{SB} events/t y	$B_{2\nu}$ events/t y
⁸² Se	$9.2 \times 10^{19} [17]$	2.992	-0.172	3.093	4.42	0.15
¹⁰⁰ Mo	$7.1 \times 10^{18} [17]$	3.034	-0.168	3.202	0.11	1.56
¹⁵⁰ Nd	$8.2 \times 10^{18} [17]$	3.368	-0.197	3.454	0.12	1.00
⁷⁶ Ge	1.93×10^{21} [18]	2.039	-1.010	2.962	0.03	0.005
¹³⁰ Te	$6.9 \times 10^{20} [17]$	2.528	-0.463	2.949	0.48	0.01
¹³⁶ Xe	$2.19 \times 10^{21} [17]$	2.468	-0.671	2.548	0.55	0.003

$$R_{\beta\beta} = \frac{1}{M} \frac{dN}{dt} = \frac{\lambda N}{M} \approx \frac{420}{W} \left(\frac{10^{27}}{T_{1/2}^{0\nu}}\right) / (\text{ton yr}),$$

Ge 10²⁸ y: 0.6 counts/ t y

Xe 10²⁸ y: 0.3 counts/ t y

Overall discussion of background

- If we required <0.01 counts/t y from this channel, energy cuts alone won't suffice for all isotopes.
 - Will required additional topology cuts, like Multi-site energy deposit (MSE)

Isotope	CC rate	CC Tag	Resol.	MSE
Ge-76	Very low	No	Yes	Some
Se-82	Very high	No		Yes
Mo-100	Very high	Yes		No
Te-130	Low	No	Yes	Yes
Xe-136	Low	No	Some	Yes
Nd-160	Very High	No		Yes

Note on Elastic Scattering

$$R_8 = (F_8 \frac{\Delta \sigma}{\Delta E} N_A) \left(\Delta E \frac{1}{MW_t(g)} N_e \right)$$
$$\approx (8 \times 10^{-4} / (\text{keV y t})) \left(\Delta E \frac{M}{MW_t(g)} N_e \right)$$

F₈ ⁸B flux N_e e- per molecule

Will become an issue for loaded scintillator for $\tau_{1/2}$ >10²⁷ y. Tags are much harder for this channel. Just energy resolution.

- J. Phys. G30 (2004), R183
- J. Phys. G43 (2016),

Summary

- •Solar neutrinos will create signals in ββ targets at a level near future goals.
- Use of the CC tag or MSE cuts will be necessary to reduce this background in most nuclei.
- •Elastic scattering is a concern for $\beta\beta$ targets where the $\beta\beta$ isotope is a small fraction of the total detector mass.