

On Behalf of the KamLAND-Zen collaboration

KamLAND -Kamioka Liquid-scintillator Anti-Neutrino Detector

Surrounded by 55 Japanese Reactor Units

The KamLAND Detector

Balloon & support ropes

Target LS Volume
(1 kton, 13m diameter)

Buffer Oil Zone

Photomultiplier Tubes (34% coverage of ID)

Stainless Steel Inner Vessel (18m diameter)

calibration device & operator

Glove box

Chimney (access point)

Outer Detector (3.2 kton Water Cherenkov)

The KamLAND Results during the last decade

First measurement of neutrino oscillations

Precision measurement Of mixing parameters

First detection of geo neutrinos and measurement of the Earth radiogenic heat

⁷Be solar v measured, BG well-understood

From the KamLAND to KamLAND-Zen

Zero Neutrino double beta decay search Advantages of using KamLAND as a double beta decey experiment

- running detector
 - → relatively low cost and quick start
- huge and clean (1200m³, U: 3.5x10⁻¹⁸ g/g, Th: 5.2x10⁻¹⁷) → negligible external gamma (Xe and mini-balloon need to be clean)
- Xe-LS can be purified, mini-balloon replaceable

if necessary, with relatively low cost → highly scalable (up to several tons of Xe)

- No escape or invisible energy from β, γ → BG identification relatively easy
- anti-neutrino physics continues
 → geo-neutrino w/o Japanese reactors, waiting for SN

To incorporate new capabilities a few modifications/developments are necessary

phase-1 and 380kg for phase-II

Development of Xe loaded scintillator

Mini Balloon is very thin so Xe loaded scintillator should have the same density as the KamLAND scintillator

Xe loaded LS KamLAND LS = PC 20% PC 17.7% Decane 82.3%

PPO(~2.7g/I) Xe 3.0wt%

Dodecane 80% PPO(1.36g/I)

KamLAND Deck Modifications

Need sy. balloon

Have to build new capabilities to:

- Load scintillator with Xe.
- Push scintillator inside mini balloon
- •Replace scintillator inside mini balloon with Xe loaded scintillator
- •Remove and store excess of KamLAND scintillator from the outside of mini balloon
 - •Remove Xe loaded scintillator out of mini balloon
 - Remove Xe from scintillator

Scintillator Handling Infrastructure new addition to the KamLAND

Mini Balloon. Thickness - 25 µm

Assembly/Deployment

- •Weld Balloon together, test it for a leaks.
- •Fold it and wrap inside protective layer (Cocoon)
- •Move to the detector site.
- •Remove transportation protective layer in a clean environment
- •Lower its bottom while it is folded via chimney.
- •Filled it with small amount (~100 I.) of scintillator with density higher than that of KamLAND scintillator.
- •Deploy it all the way, remove protective layer and straps.
- Expand it using regular liquid scintillator
- •Replace regular scintillator with Xe loaded scintillator

Test deployment of Mini Balloon Prototype

Mini-balloon fabrication in super clean room (2011.May-July)

Class 1 (=1 particle(>0.1 μ m) | feet³)

Film rinsing with ultra-pure water using an ultrasonic machine

Carefully checking films.

July 2011

Packing

Shipping to Kamioka

Kamioka in the mine

A clean tent at the KamLAND dome area

Mini-balloon into the tent

Preparation for the deployment

Monitoring camera

Camera installation

Connecting the corrugated tube

Install the mini-balloon into KamLAND (Aug.2011)

View by a monitor camera from the detector top.

The mini-balloon edge can be seen by the deformed shape of the beam in the tank.

Successfully done!

Connection pipe

29

We have to wait for Radon to decay for a while

After calibration of energy and vertex reconstructions we can look into Physics

Very Unfortunate Timing

April 2011 – all materials were ready and stored at Sendai class 10 clean room to build mini balloon

May- July 2011 Balloon was build

August 2011 balloon was transported to Kamioka and deployed in the KamLAND

Cesium from Fukushima

134
Cs $t_{1/2}$ =2.07 y 137 Cs $t_{1/2}$ =30.06 y

Ratio of two Cs isotopes in soil samples at Sendai is the same as on the mini-balloon!

However all contamination on the balloon we can cut away by sacrificing fiducial mass

Radial Cut

Cs contamination helps us to define mini balloon position!!!

Energy Spectrum

Investigating background near 2.6 MeV

KamLAND-Zen is a full energy absorption experiment. Only limited number of candidates for BG need to be checked

Total we got a few thousands atoms of 110mAg in the scintillator

First results from KamLAND-Zen

Two years after the beginning of detector modification

Path forward

purification!!

fine binning of volume

triple fold coincidence

future task

tripe fold coincidence for ¹⁰C rejection

dead time free electronics MoGURA (original electronics was designed in last century

B.G. improvements after purification

Phase-1 320kg before purification

in-situ purification possible!!

Phase-2 380kg after purification

2013/12/11 - 2014/10/27 534.5 days (504 kg-yr)

(cf. $T_{1/2}(^{110m}Ag)=250$ days)

Event rates at R.O.I.

Phase 2 534.5 days

2.3 < E < 2.7 MeV, R < 1 m

A hypothesis: "Dust" sank
!?

Yet only ~2σ discrepancy from the simple decay

New data set analysis

Energy and radial distributions are well-reproduced by known BGs.

Some details about individual contributions

		Period-1]	Period-2	
_		270.7 days)	(20	63.8 days)	
Observed events		22	•	11	
Background	Estimated	Best-fit	Estimated		Best-fit
136 Xe $2\nu\beta\beta$		5.48			5.29
Residual radioactivity in Xe-LS					
²¹⁴ Bi (²³⁸ U series)	0.23 ± 0.04	0.25	0.028 ± 0.005		0.03
²⁰⁸ Tl (²³² Th series)	• • •	0.001	• • •		0.001
110m Ag	• • •	8.5	• • •		0.0
		External (Radioactivity in IB)			
²¹⁴ Bi (²³⁸ U series)	• • •	2.56	• • •		2.45
²⁰⁸ Tl (²³² Th series)	• • •	0.02	• • •		0.03
110m Ag	• • •	0.003	• • •		0.002
		Spallation products			
10 C	2.7 ± 0.7	3.3	2.6 ± 0.7		2.8
⁶ He	0.07 ± 0.18	0.08	0.07 ± 0.18		0.08
^{12}B	0.15 ± 0.04	0.16	0.14 ± 0.04		0.15
¹³⁷ Xe	0.5 ± 0.2	0.5	0.5 ± 0.2		0.4

Summary for 2.3 < E < 2.7 MeV, R < 1 m

Results on Ov2B from the second phase

period-1 period-2

livetime 270.7 days 263.8 days

 $\frac{136 \text{Xe } 0 \text{v} 2 \beta}{\text{decay rate}} < 5.5 / \text{kton/day} < 3.4 / \text{kton/day}$

combined < 2.4 /kton/day (90%C.L.)

 $_{\text{half-life}}^{136}\text{Xe }0v2\beta$ > 9.2×10²⁵ yr (90%C.L.)

Lucky region R >1m, Z>0 region

use FV for period-2 data upper hemisphere R<1.26 m (5 bins) lower hemisphere R<1.06 m (3 bins)

provides better limit of < 3.25 /day/kton

Phase-1 & 2 combined limit

$\langle m_{\beta\beta} \rangle < (61 - 165) \,\mathrm{meV}$

Big leap toward IH!!

Path forward → bigger and cleaner mini-balloon.

more mass of Xenon isotope (~800 kg)

Mini-balloon has been extracted.

(Dec. 2015)

for tank investigation required by law

Xenon has been recovered during recirculation and deflation of the mini-balloon.

2nd mini-balloon fabrication during the summer of 2016

cleaning, cleaning, and cleaning

New bigger mini-balloon was deployed in August 2016

after Leak check and repair

New mini-balloon has been deployed and inflated with LS without Xe

New mini-balloon troubles

After deployment we confirmed that the mini-balloon is cleaner!!

Measures we took worked!

At the same time, we noticed;

Indications of leak;

- camera image
- · load cell
- balloon shape reconstruction with ²¹⁰Po events
- 222Rn decay rate
- mixture of KL-LS and dummy-LS by gas-chromatography

Need to start over

Bad news:

we lost one year of statistics

Good news:

no any amount of Xe was lost.

we manage to evaluate radio purity of the new mini balloon

we do not see any traces of Cs or ¹¹⁰Ag

Th and U contamination is 3 times lower than before

Present Status:

Extensive R&D were conducted to prevent for welding failure

Even more rigorous program for cleanness during film preparation and welding

Final preparations are on the way to build a new mini-balloon during this summer

Target is to deploy 800 kg experiment in the fall of 2017

Some long range plans!

Higher energy resolution for reducing 2v BG

1000+ kg xenon

KamLAND2-Zen

Winston cone

high q.e. PMT $17"\phi \rightarrow 20"\phi \epsilon = 22 \rightarrow 30 + \%$

New LAB LS (better transparency)

light collection ×1.8

light collection ×1.9

light collection ×1.4

expected $\sigma(2.6 \text{MeV}) = 4\% \rightarrow \sim 2\%$ target sensitivity 20 meV

And more?

Super-KamLAND-Zen in connection with Hyper-Kamiokande

target sensitivity 8 meV

R&D for KamLAND2-Zen and future

winston cone

HQE-PMT

New LAB-LS

o denser xenon

Xe partial pressure(MPa)

principle confirmed

o scintillator film

o imaging

Summary

- Phase-1 & 2 combined result for 0v2β of ¹³⁶Xe

$$T_{1/2}^{0\nu} > 1.07 \times 10^{26} \, \mathrm{yr}$$
 $\langle m_{\beta\beta} \rangle < (61 - 165) \, \mathrm{meV}$ [PRL117, 082503]

- KamLAND-Zen 800 (20 kg of izotope per collaboratior) is on the way
 Mini-balloon for 750kg once installed, but there was a leak
 Balloon film was cleaner than previous installation
 deployment is planning to be in the fall 2017.
- R&D for KamLAND2-Zen is going well.
 Target sensitivity below 20 meV.

Example of improvements

before

after

keep staying away
goggle
welding machine
cover sheet.
glove on glove
laundry twice a day.
clean underwear.
hanging room in a clean room.
dust visualization
more neutralizer

cover