

Statistical analysis of beta decays and the effective value of g_A

Frank Deppisch

f.deppisch@ucl.ac.uk

University College London

with J. Suhonen: Phys.Rev. C94 (2016) 5, 055501

MEDEX'17 | Prague | 29 May - 2 June 2017

Dirac vs Majorana

Two possibilities to define fermion mass

Dirac mass analogous to other fermions but with ${m_{\nu}}/{\Lambda_{EW}} \approx 10^{-12}$ couplings to Higgs

Majorana mass, using only a left-handed neutrino

→ Lepton Number Violation

Beta decays

Single beta decay $(A,Z) \rightarrow (A,Z+1) + e^- + \bar{\nu}_e$

- ► Allowed double beta $(2\nu\beta\beta)$ decay $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$
- Neutrinoless double beta $(0\nu\beta\beta)$ decay $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$
 - Violation of lepton number
 - Mediated by Majorana neutrinos
 - Variants
 - $0\nu\beta^+\beta^+$: $(A,Z) \rightarrow (A,Z-2) + 2e^+$
 - $0\nu\beta^+\text{EC:}$ $(A,Z) + e^- \rightarrow (A,Z-2) + e^+$
 - $0\nu \text{ECEC:}$ $(A, Z) + 2e^- \rightarrow (A, Z 2)$

Nuclear Matrix Elements

Hadronic current

$$J^{\mu}(q) = g_V \gamma^{\mu} - g_A \gamma^{\mu} \gamma^5 + \frac{ig_M}{2m_N} \sigma^{\mu\nu} q_\nu - g_P \gamma^5 q^{\mu}$$

• Nuclear Matrix Element $M^{0\nu}$

$$M^{0\nu} = g_A^2 \left(M_{GT} - \frac{g_V^2}{g_A^2} M_F + M_T \right)$$

University College London

- Dependence on isotope and operator
- Many-body problem
- Factor 2 3 uncertainty between nuclear models

Nuclear matrix element

$$M^{0\nu} = g_A^2 \left(M_{GT} - \frac{g_V^2}{g_A^2} M_F + M_T \right)$$

- Axial-vector coupling g_A
 - Free nucleon: $g_A \approx 1.27$
 - Comparison of β and $2\nu\beta\beta$ decay with theory: $g_A \approx 0.6-0.8$
 - If applicable to 0νββ, strong reduction of sensitivity
 - Genuine effect or short-coming of models?

pnQRPA

- Calculation of single beta / EC and 2νββ matrix elements J. Suhonen, O. Civitarese, Nucl. Phys. A 924 (2014) 1
 - Woods-Saxon Potential with three different orbital spaces (A=62-80, 98 - 108, 110 - 142)
 - Renormalized Bonn-A G-Matrix
 - $\circ g_{pp}$ and g_{ph} interaction parameters (per even-even system)
 - $\circ g_{ph}$ determined by location of Gamow-Teller Giant Resonance

$$\Delta E_{\rm GT} = E(1_{\rm GTGR}^+) - E(0_{\rm gs}^+) = \left[1.444 \left(Z + 1/2 \right) A^{-1/3} - 30.0 \left(N - Z - 2 \right) A^{-1} + 5.57 \right] \,\text{MeV}.$$

only on average of theoretical / pheno centroids \rightarrow include uncertainty of 15%

• g_A as a free parameter per isobaric system

pnQRPA

• Calculation of single beta / EC and $2\nu\beta\beta$ matrix elements

pnQRPA

• Calculation of single beta / EC and $2\nu\beta\beta$ matrix elements

Comparison with Beta Decay / EC Measurements

- Fit of model parameters over isobaric system
 - g_A
 - g_{pp}^{i} (per even–even system)
 - $\circ g^i_{ph}$ (per even-even system) as "nuisance" parameters
- Incorporate allowed $gs \rightarrow gs$ GT beta decay / EC rates

Comparison with Beta Decay / EC Measurements

- Fit of model parameters over isobaric system
 - g_A
 - g_{pp}^{i} (per even–even system)
 - $\circ g^i_{ph}$ (per even-even system) as "nuisance" parameters
- Markov Chain Monte Carlo to find posterior parameter distribution $p(g_A, g_{pp}^i, g_{ph}^i)$ based on fitness $P = e^{-\chi^2/2}$, e.g. triplet

$$\chi^{2} = \left(\frac{\log ft_{L}^{th}(g_{A}, g_{pp}^{L}, \gamma_{ph}^{L}) - \log ft_{L}^{exp}}{\delta \log ft_{L}^{exp}}\right)^{2} + \left(\frac{\log ft_{R}^{th}(g_{A}, g_{pp}^{R}, \gamma_{ph}^{R}) - \log ft_{R}^{exp}}{\delta \log ft_{R}^{exp}}\right)^{2} + \left(\frac{\gamma_{ph}^{R} - 1}{0.15}\right)^{2} + \left(\frac{\gamma_{ph}^{L} - 1}{0.15}\right)^{2}$$

Simplified Triplet Case

University College London

Two parameters

 g_A, g_{pp}

See also A. Faessler at al., J. Phys. G 35 (2008) 075104

12 / 20

Triplet Case

- Three parameters $g_A, g_{pp}^{Mo}, g_{pp}^{Ru}$
- Two nuisance parameters γ_{ph}^{Mo} , γ_{ph}^{Ru}

Frank Deppisch | Statistical Beta Decay Analysis and g_A | 29/5/2017

Isobaric Multiplets

A	Z_0	Multiplet	dof	$g_{\rm A}^{\rm fit}$
62	28	$28 \leftarrow 29 \leftarrow 30$	3-2	$0.80^{+0.43}_{-0.01}$
64	28	$28 \leftarrow 29 \rightarrow 30$	3-2	$0.90^{+0.11}_{-0.09}$
66	28	$28 \rightarrow 29 \rightarrow 30$	3-2	$1.00\substack{+0.19 \\ -0.16}$
68	29	$29 \to 30 \leftarrow 31 \leftarrow 32$	3-3	$0.65\substack{+0.06\\-0.07}$
70	29	$29 \to \underline{30} \leftarrow 31 \to 32$	3-3	-
78	34	$34 \leftarrow 35 \rightarrow 36$	3-2	$0.35\substack{+0.59 \\ -0.02}$
80	33	$33 \rightarrow \underline{34} \leftarrow 35 \rightarrow 36 \leftarrow 37$	3-4	1.40
98	39	$39 \rightarrow 40 \rightarrow 41$	2-2	$0.53_{-0.03}^{+0.04}$
100	41	$41 \to \underline{42} \leftarrow 43 \to 44$	3-3	$0.37^{+0.22}_{-0.00}$
102	42	$42 \rightarrow 43 \rightarrow 44$	3-2	$0.34_{-0.00}^{+0.16}$
104	44	$\underline{44} \leftarrow 45 \rightarrow 46$	3-2	$0.59^{+0.28}_{-0.10}$
106	45	$45 \rightarrow 46 \leftarrow 47 \rightarrow 48$	3-3	$0.40^{+0.02}_{-0.02}$
108	44	$44 \rightarrow 45 \rightarrow 46 \leftarrow 47 \rightarrow 48$	4-4	$0.41^{+0.01}_{-0.01}$
110	46	$\underline{46} \leftarrow 47 \rightarrow 48$	3-2	$0.71_{-0.13}^{+0.38}$
112	48	$48 \leftarrow 49 \rightarrow 50$	3-2	$0.67\substack{+0.19 \\ -0.03}$
114	46	$46 \to 47 \to \underline{48} \leftarrow 49 \to 50$	4-4	$0.60^{+0.03}_{-0.03}$
116	48	$\underline{48} \leftarrow 49 \rightarrow 50$	3-2	$0.68^{+0.38}_{-0.01}$
118	48	$48 \to 49 \to 50 \leftarrow 51 \leftarrow 52$	4-4	$0.75\substack{+0.06 \\ -0.04}$
120	48	$48 \rightarrow 49 \rightarrow 50 \leftarrow 51$	3-3	$0.71\substack{+0.06 \\ -0.05}$
122	48	$48 \to 49 \to \underline{50} \mid 52 \leftarrow 53 \leftarrow 54 \leftarrow 55$	5-5	$0.49^{+0.03}_{-0.03}$
124	54	$54 \leftarrow 55 \leftarrow 56$	3-2	$0.34_{-0.02}^{+0.20}$
126	54	$54 \leftarrow 55 \leftarrow 56$	3-2	$0.35\substack{+0.20 \\ -0.02}$
128	52	$\underline{52} \leftarrow 53 \rightarrow 54 \leftarrow 55 \leftarrow 56$	4-4	$0.59^{+0.05}_{-0.06}$
130	54	$54 \leftarrow 55 \rightarrow 56$	3-2	0.78
134	56	$56 \leftarrow 57 \leftarrow 58$	3-2	$0.72\substack{+0.10 \\ -0.08}$
138	58	$58 \leftarrow 59 \leftarrow 60$	3-2	$0.92^{+0.20}_{-0.09}$
140	58	$58 \leftarrow 59 \leftarrow 60 \leftarrow 61 \leftarrow 62 \leftarrow 63 \leftarrow 64$	5-6	$1.10\substack{+0.07 \\ -0.09}$
142	60	$60 \leftarrow 61 \leftarrow 62 \leftarrow 63$	3-3	$1.20^{+0.07}_{-0.12}$

Frank Deppisch | Statistical Beta Decay Analysis and g_A | 29/5/2017

Full Results – Triplets

Full Results – Triplets

Frank Deppisch | Statistical Beta Decay Analysis and g_A | 29/5/2017

Single beta / EC / 2νββ analysis relevant for 0νββ?

17 / 20

Single beta / EC / 2νββ analysis relevant for 0νββ?

Unclear!

- Processes different at nucleon level
- Probing different transitions
- Incorporate more experimental information
 - Higher, forbidden beta decays
 - Charge exchange reactions
 Muon capture

Virtual transition $2\nu\beta\beta$ ⁷⁶Se ⁷⁶Ge 76 AS

Single beta / EC / 2νββ analysis relevant for 0νββ?

Unclear!

- Processes different at nucleon level
- Probing different transitions
- Incorporate more experimental information
 - Higher, forbidden beta decays
 - Charge exchange reactions

Muon capture

Suhonen '16

Conclusion

• Interpretation of $0\nu\beta\beta$ requires precise NMEs

- Estimate of experimental sensitivity
- Determination of $0\nu\beta\beta$ mass or falsification of Majorana scenario

• Need to determine magnitude of g_A quenching in $0\nu\beta\beta$

- At least: additional source of uncertainty
- Potentially: reduced sensitivity

Solution likely requires concerted effort

- Theoretical improvements, e.g. 2-body currents at higher momentum transfer [Menendez, Gazit, Schwenk, Phys. Rev. Lett. 107 (2011) 062501]
- Experimental probes, e.g. NUMEN
- Unbiased confrontation of theory with experiment

Given analysis example of consistent fit

• Full theory parameter variation against combined experimental data