

Search for double beta decay in ¹⁰⁶Cd in the DAMA/Crys setup

Belli P., Bernabei R., Brudanin V.B., Cappella F., Caracciolo V., **Cerulli R.**, Danevich F.A., Incicchitti A., Kasperovych D.V., Kobychev V.V., Mokina V.M., Polischuk O.G., Tretyak V.I., Zarytskyy M.M.

R. Cerulli INFN – Roma Tor Vergata MEDEX'17 Conference Prague (Czech Republic) May 29 –June 2, 2017

¹⁰⁶Cd for 2β decay

¹⁰⁶Cd, a promising isotope:

- 1) One of the six isotopes candidate for $2\beta^+$ decay
- 2) High natural abundance $\delta = (1.25 \pm 0.06)\%$; possible enrichment up to 100%;
- 3) $Q_{2\beta}$ = (2775.39±0.10) keV; $2\beta^+$, $\epsilon\beta^+$ and 2ϵ decay modes possible
- 4) Possible resonant 2ε0ν captures to excited level of ¹⁰⁶Pd (2718 keV 2K0ν, 2741 keV KL₁0ν, 2748 keV KL₃0ν)
- Theoretical T_{1/2} favorable for some modes (10²⁰ 10²² yr) [1] (g.s. to g.s.)

Decay scheme

Current activity on 2^β decay of ¹⁰⁶Cd

TGV-2 Experiment:

32 planar HPGe + 16 foils of ¹⁰⁶Cd (δ=75%, 13,6 g), LSM (France)

COBRA:

32 semiconductors CdZnTe (1 cm³ each), LNGS (Italy)

Current sensitivity: $T_{1/2} \approx 10^{18} \text{ yr}$

K. Zuber, Prog. Part. Nucl. Phys. 64 (2010) 267

Current sensitivity: $T_{1/2} \approx 10^{20} \text{ yr}$

N.I. Rukhadze et al., NPA 852 (2011) 197, BRASP 75 (2011) 879

CdWO₄ as a 2β detector

CdWO₄ crystal scintillator:

- ✓ Good scintillation properties
- ✓ Low levels of internal contamination in U, Th and K
- ✓ α/β discrimination capability

Properties	Value
Density [g/cm ³]	7.9
Melting point [K]	1598
Hygroscopic	No
Wavelength of max emission [nm]	475
Refractive index @ max em.	2.2-2.3
Primary decay time [µs]	14
Photoelectron yield [% of Nal(TI)]	30-50

¹⁰⁶CdWO₄ crystal scintillator NIMA615(2010)301

- DAMA and INR-Kiev Collaboration
- Samples of cadmium were purified by vacuum distillation (Institute of Physics and Technology, Kharkiv) and the Cadmium tungstate compounds were synthesized from solutions
- Crystal boule was grown by the low-thermal-gradient Czochralski technique (NIIC Novosibirsk) (initial powder 265 g)
- Crystal scintillator (216 g), 66.4% enrichment in ¹⁰⁶Cd measured by thermal ionisation mass-spectrometry (2.66×10²³ nuclei of ¹⁰⁶Cd)
- 2nd enriched CdWO₄ crystal ever produced
- Measured in DAMA/R&D set-up and in LNGS Stella facility

¹⁰⁶CdWO₄ crystal scintillator

Excellent optical and luminescence properties were reached thanks to a special R&D (deep purification of raw materials and low-gradient crystal growth by the Czochralski method). High light output.

Emission spectra of ¹⁰⁶CdWO4 crystal under ultraviolet (PL) and X-ray (RL) excitation

Response of the detector to γ sources

Searching for 2β decay by using ¹⁰⁶CdWO₄ at LNGS PRC85(2012)044610

Experiment with ¹⁰⁶CdWO4 performed at LNGS in the framework of the DAMA and INR-Kiev Collaboration:

- single crystal in DAMA/R&D
- in coincidence with 4 HP-Ge in the Stella facility

3" PMT EMI9265 Polistiren light guide

106CdWO

Quartz light guide

1st exp in DAMA/R&D

Search for 2β decay in ¹⁰⁶Cd in DAMA/R&D

Energy distribution of the γ/β events (by PSD)

Contamination level in ¹⁰⁶CdWO₄ (mBq/Kg) ²⁰⁷Bi < 0.7 113mCd $116 \cdot 10^{3}$ ²³²Th < 0.07 ²²⁸Th 0.042(4)238[] < 0.6 ²²⁶Ra 0.012(3)40**K** <1.4 ²⁰⁷Bi surface 0.06 mBg/cm^3

Phys. Rev. C 85 (2012) 044610

Result: $T_{1/2}$ (2β, ¹⁰⁶Cd→ ¹⁰⁶Pd) ≥ 10¹⁹⁻²¹ yr

> 27 new results for 2β ¹⁰⁶Cd 9 of them – for the first time

¹⁰⁶CdWO₄ in GeMulti

• ¹⁰⁶CdWO₄ in coincidence / anticoincidence with 4-crystals HPGe detector (GeMulti)

- New limits on 2ϵ , $\epsilon\beta^+$, $2\beta^+$ processes on the level of $T_{1/2} > 10^{20} 10^{21}$ yr
- The half-life limit on the $2v\epsilon\beta^+$ decay, $T_{1/2} > 1.1 \times 10^{21}$ yr, reached the region of theoretical predictions
- For $0v\epsilon 2$ resonant captures: $T_{1/2} > (8.5 \times 10^{20} 1.4 \times 10^{21})$ yr

archPbWO₄ light guide

- PbWO₄ light-guide realized in order to suppress the radioactive components from the photomultiplier
- Archaeological lead: A (²¹⁰Pb) <0.3 mBq/kg [3]

- Purification Pb: Institute of Physics and Technology (Kharkiv)
- Crystal growth: Institute of Scintillation Materials (Kharkiv)

Firstly used in the ¹⁰⁶Cd experiment in GeMulti

P. Belli et al., PRC 85 (2012) 044610
 F.A. Danevich et al., NIMA 741(2014)41
 NIMA 603 (2009) 328; Inorganic Mater. 47 (2011) 645.

New ¹⁰⁶CdWO₄ experiment in DAMA/Crys set-up

- New experiment with ¹⁰⁶CdWO₄ in (anti)coincidence with two large CdWO₄ scintillators mounted in DAMA/Crys set-up at LNGS
- 2) High efficiency
- 3) Experiment in data taking since May 2016

New ¹⁰⁶CdWO₄ experiment in DAMA/Crys set-up

Energy resolutions for ¹⁰⁶CdWO₄ and CdWO₄

Detector Performances

¹⁰⁶CdWO₄ detector pulses start positions relatively to the ^{*nat*}CdWO₄ signals

 T_{106} : start of the signal in ¹⁰⁶CdWO₄ detector

- Events collected irradiating the detectors with a ²²Na source.
- Event with energy 1273 keV in 106 CdWO₄ and with 511 keV (within 3σ) in the first (left) and second (right) CdWO₄. ¹⁵

Pulse shape discrimination (PSD)

The α spectrum

Spectrum of α particles obtained by PSD over 3300 h with fit of radioactive contaminations

Time-Amplitude Analysis


```
Activity of <sup>228</sup>Th:
```

The arrival time, the energy and the pulse shape of each event were used to select the fast decay chain in the ²²⁸Th sub-chain of the ²³²Th family:

²²⁴Ra (Q = 5.789 MeV, $T_{1/2} = 3.66$ d) \downarrow^{220} Rn (Q = 6.405 MeV, $T_{1/2} = 55.6$ s) \downarrow^{216} Po (Q = 6.906 MeV, $T_{1/2} = 0.145$ s) \downarrow^{212} Pb

Activity of ²²⁸Th in ¹⁰⁶CdWO₄ crystal was estimated as: **5(1)** μ **Bq/kg** Also was estimated α/γ ratio and energy resolution for alpha-particles. ¹⁸

Energy spectra of ¹⁰⁶Cd

The energy spectra accumulated over 6935 h by the ¹⁰⁶CdWO₄ detector in anticoincidence with the ^{*nat*}CdWO4 detectors, in coincidence with event(s) and when at least one of the ^{*nat*}CdWO4 detectors with energy E > 200 keV, E = 511 keV, and E = 1160 keV

Sensitivity estimation

Expected signal for ${}^{106}Cd 0v2\beta(0^+ \rightarrow 0^+)$:

Sensitivity estimation after 1yr:

In the hypothesis of about 29 background counts in [0.-3.] MeV

Conclusion

- ¹⁰⁶CdWO₄ successfully cleaned from the surface contamination (²⁰⁷Bi).
- The detector is running in coincidence with two $^{nat}CdWO_4$ to search for 2β processes in ^{106}Cd .
- Deeply purified lead tungstate (PbWO₄) crystal light-guide from low-radioactive archaeological lead (that is free from 210 Pb) used as light-guide to supress γ 's from PMT.
- Selection the events of ${}^{106}CdWO_4$ detector in coincidence with ${}^{nat}CdWO_4$ reduces background to search for 2 β + processes ${}^{106}Cd$.
- Improvement in sensitivity expected for different of 2 β⁺ decay modes for ¹⁰⁶Cd (10²⁰-10²¹ years).
- Data taking and analysis of the experiment are in progress.
- Future production of ¹⁰⁶CdWO4 depleted in ¹¹³Cd foreseen